The use of human serum in supporting the in vitro and in vivo proliferation of human conjunctival epithelial cells

L P K Ang, D T H Tan, C J Y Seah, R W Beuerman

METHODS

Human conjunctival biopsies were obtained from surgical patients after obtaining informed consent, according to the statutes of the institutional review board of the Singapore National Eye Center. All experimental procedures conformed to the Association for Research in Vision and Ophthalmology statement for the use of animals in ophthalmic and vision research, and the guidelines of the Declaration of Helsinki in biomedical research involving human subjects.

Aim: To evaluate the use of human serum (HS) in supporting the in vitro and in vivo proliferation of human conjunctival epithelial cells, and compare it with fetal bovine serum (FBS) and bovine pituitary extract (BPE).

Methods: Conjunctival epithelial cells were cultivated in media supplemented with HS (5%, 10%), FBS (5%, 10%), and BPE (70 µg/ml, 140 µg/ml). The colony forming efficiency (CFE), bromodeoxyuridine (BrdU) EUSA proliferation assay, and cell generations were analysed. Cells were evaluated for keratin (K4, K19, and K3) and MUC5AC expression by immunostaining and RT-PCR. Conjunctival equivalents constructed on amniotic membranes were transplanted onto severe combined immune deficient (SCID) mice for 10 days and analysed histologically.

Results: The proliferation assays of HS supplemented cultures (CFE, 6.7% (SD 1.8%); BrdU absorbance, 0.86 (0.16)) were comparable to FBS supplemented (CFE, 9.3% (1.8%); BrdU absorbance, 1.11 (0.18)) and BPE supplemented cultures (CFE, 5.9 (1.5); BrdU absorbance, 0.65 (0.12)). Goblet cell densities for HS, FBS, and BPE supplemented media were 52 cells/cm², 60 cells/cm², and 50 cells/cm², respectively. HS supplemented cultures formed stratified epithelial sheets in vivo following transplantation.

Conclusions: The proliferative capacity of conjunctival epithelial cells cultivated in HS supplemented cultures was comparable to FBS and BPE supplemented cultures. The elimination of animal material from the culture system is advantageous when cultivating cells for clinical transplantation.

Harvesting of human conjunctival epithelial cells and human serum

 Conjunctival biopsies were obtained from patients undergoing routine surgery for nasal pterygium or cataract. A small piece of normal conjunctiva (1 x 3 mm in size) was removed from the superior bulbar region, 10–15 mm from the limbus. HS was collected from consenting healthy patients, aged 20–32 years old (mean age 29.3 years). The blood was processed by centrifugation at 2500 rpm for 20 minutes to separate the serum from cells. The serum was then stored in sterile tubes for use.

Ex vivo expansion of conjunctival epithelial cells

The conjunctiva was cut into 1 mm pieces, and cultivated as explants on 35 mm tissue culture dishes. The basal medium consisted of a 1:1 mixture of DMEM/Ham’s F12 (Gibco, Carlsbad, CA, USA), which was similar to the basal media used in other reports.° Culture conditions with the following supplements were compared: 5% HS, 10% HS; 5% FBS, 10% FBS; 70 µg/ml BPE, and 140 µg/ml BPE. Basal medium alone was used as the control. Antibiotics (100 IU/ml penicillin, and 100 µg/ml streptomycin) were added to each condition.

The cells were incubated at 37°C, under 5% CO₂ and 95% air, with media change carried out every 2 days. Following harvesting, the cells were counted and plated for additional passages. The results of the proliferation assays and cell generations are shown in Table 1.

Abbreviations: BPE, bovine pituitary extract; BrdU, bromodeoxyuridine; CFE, colony forming efficiency; FBS, fetal bovine serum; HAM, human amniotic membranes; HS, human serum; PAS, periodic acid Schiff; SCID, severe combined immune deficient
subculturing, cells were plated onto culture dishes at a seeding density of 4×10^3 cells/cm2.

Clonal growth assay
The clonal growth ability of cultured cells was determined by the colony forming efficiency (CFE). Cells were plated at a clonal density of 1000 cells onto 60 mm culture dishes. A colony was defined as a group of eight or more contiguous cells. The colonies were fixed on day 10, stained with rhodamine B, and counted. The CFE was defined as follows:

$$\text{CFE} (\%) = \frac{\text{colonies formed at end of growth period} \times 100}{\text{total number of viable cells seeded}}.$$

Bromodeoxyuridine (BrdU) ELISA cell proliferation assay
The proliferative capacity of passage 1 cells was determined by a BrdU ELISA cell proliferation assay. Analysis was performed on the sixth day of passage. Cultured cells were incubated with 10 μM BrdU labelling solution (Amersham Biosciences, Freiburg, Germany) for 2 hours and incubated with 100 μl of monoclonal antibody against BrdU for 30 minutes. The BrdU absorbance was measured directly using a spectrophotometric microplate reader at a test wavelength of 450 nm and a reference wavelength of 490 nm. This gave a measure of the degree of proliferation of cells, which we termed the proliferation index. Each sample was cultured in quadruplicate.

Number of cells generations
The long term proliferative capacity of cultured cells was determined by passaging these cells till senescence in their respective media. The number of cell generations, x, was calculated as follows:

$$x = \log_2 \left(\frac{N}{N_0} \right)$$

where N is the total number of cells harvested at subculture, and N_0 is the number of viable cells seeded.

Development and xenotransplantation of conjunctival epithelial equivalents
Human amniotic membranes (HAM) were obtained from mothers who had undergone cesarean section delivery, and prepared as described previously. The HAM was incubated with Dispase II 1.2 U/ml (Gibco) for 2 hours and gently scraped to remove any amniotic epithelial cells. The denuded HAM was placed basement membrane side up on a nitrocellulose filter paper support (Millipore, Bedford, MA, USA).

Conjunctival specimens were cut into 1 mm pieces and inoculated onto the basement membrane side of the HAM. When a confluent layer of cells was obtained after 10 days, the calcium concentration was increased to 1.2 mM for 4 days with calcium chloride solution to promote differentiation and stratification.

Conjunctival epithelial equivalents were then xenografted onto the subcutaneous tissue of severe combined immune deficient (SCID) mice, aged 7–9 weeks old. Dorsal skin incisions were made to create a skin flap that was raised to expose the underlying dorsal muscle fascia. The conjunctival equivalent was placed epithelial side up over the muscle fascia and the skin flap sutured in place with 8/0 silk sutures. Ten days following grafting, the mice were killed and the tissues were excised for analysis.

Conjunctival epithelial cell differentiation
For immunocytochemistry, cultivated conjunctival epithelial cells were incubated for 1 hour with monoclonal antibodies to keratins 4, 19, and 3 (AE-5 antibody) and MUC5AC. The cells were detected with the mouse immunoperoxidase detection kit (Vectastain Elite Kit) and stained with DAB substrate. MUC5AC was detected by immunofluorescence, by
MUC5AC sense primer, 5'-ACGGCGACATTATACCGCCACAGA-3' and antisense primer, 5'-TGGAGGGACAGTCTACTGCTTGCAGA-3'. The amplification reaction was performed as follows: 3 minutes at 96°C, followed by 30 cycles of denaturation for 45 seconds at 96°C, amplification for 1 minute at 55°C, and extension for 1 minute at 72°C. The predicted length of the PCR product was 103 bp. Amplified cDNA was analysed by electrophoresis on a 1% agarose gel and viewed by ethidium bromide staining.

Morphological analysis

Cultivated cells were stained with periodic acid Schiff (PAS). Xenografted conjunctival equivalents were paraffin embedded, and 4 µm sections were cut and stained with haematoxylin and eosin.

RESULTS

Morphology and propagation of cells cultivated in serum free and serum supplemented media

In both HS and FBS supplemented media, epithelial cells migrated from the explants by day 1, and over the next few days, formed an epithelial sheet with a well defined advancing edge. Following subculturing, the colonies in HS and FBS supplemented cultures consisted of ovoid and round cells, with some elongated cells (fig 1A, B). Increasing the concentration of HS and FBS to 10% resulted in a greater proportion of large and elongated cells compared to the corresponding cultures at 5% concentration.

Cells cultivated in BPE supplemented medium began to migrate from the explants by the second day. Following subculturing, the colonies comprised fewer cells compared with serum supplemented cultures at corresponding time intervals (fig 1C). Large elongated cells were noted in cultures by day 6. Cells cultured in basal medium alone were large and elongated, forming small colonies with limited proliferative capacity (fig 1D).

Fibroblast proliferation was noted in both FBS and HS supplemented media (figs 1E, F) by passage 3 of culture. These were removed by mechanical scraping and incubation with 0.02% EDTA for 5 minutes before subculturing.

Clonal growth and proliferation

HS supplemented cultures had CFEs of 6.7% (SD 1.8%) and 5.6% (1.6%) for 5% and 10% concentrations, respectively. Cells cultivated in FBS supplemented media had the highest CFE (5% FBS, 9.3% (1.8%)) (fig 2). Increasing the concentration of FBS to 10% resulted in a decrease in CFE (7.5% (1.5%)). BPE supplemented cultures had a CFE that was similar to that of HS supplemented cultures (70 µg/ml, 5.9% (1.5%); 140 µg/ml, 6.0% (1.4%)). FIVE per cent HS supplemented cultures had a proliferation index of 0.86 (0.16), while increasing the concentration of HS to 10% resulted in a decline in proliferation index to 0.65 (0.15) (fig 3A). FBS supplemented cultures had proliferation indices of 1.11 (0.18) and 0.95 (0.16) for 5% and 10% concentrations, respectively. BPE supplemented cultures had a lower proliferation index compared to 5% HS cultures. These differences, however, were not statistically significant (t test, p>0.05).

The number of cell generations achieved in 5% and 10% concentrations of HS supplemented conditions were 9.5 (1.9) and 7.6 (1.6) respectively (fig 3B). These were lower than that of FBS supplemented conditions (5% FBS, 12.6 (2.3); 10% FBS, 10.9 (1.8)). The number of cell generations achieved in BPE supplemented cultures was similar to that of HS supplemented cultures.

Conjunctival epithelial cell differentiation

The keratin expression of cells cultivated in HS, FBS, and BPE supplemented cultures were consistent with that of normal human conjunctiva. The cultivated conjunctival epithelial cells demonstrated a positive immunoreactivity for antibodies to K4 and K19 (fig 4A, B). The cornea associated cytokeratin, K3, was not expressed by the cultured cells.

Goblet cell differentiation and proliferation

PAS positive goblet cells were observed in HS, FBS, and BPE supplemented cultures (fig 4C). These cells also stained positively for MUC5AC goblet cell mucin (fig 4D–F). Goblet
cells were present at a mean density of 52 cells/cm², 60 cells/cm², and 50 cells/cm² for 5% HS, 5% FBS, and BPE supplemented cultures, respectively. The ratio of goblet cells to non-goblet epithelial cells was approximately 1:60, 1:50, 1:65 for HS, FBS, and BPE supplemented cultures, respectively. These differences were not statistically significant (p<0.05). Goblet cells were mainly observed after 5 days in culture, and were found to occur singly, as doublets, or as small clusters of up to 6–10 cells.

The mRNA for MUC5AC goblet cell mucin was detected as a 103 bp band by RT-PCR (fig 5). The expression of MUC5AC mRNA was found to be similar in HS, FBS, and BPE supplemented cultures.

Xenotransplantation of conjunctival epithelial equivalents in SCID mice

 Conjunctival epithelial equivalents cultured in basal medium alone were only 2–3 layers in thickness 10 days after transplantation (fig 6A). Xenografted conjunctival equivalents derived from HS supplemented media formed stratified epithelial sheets 4–7 layers in thickness (fig 6B). Conjunctival epithelial sheets derived from FBS supplemented media were 5–8 layers in thickness, while those derived from BPE supplemented cultures were 4–6 layers in thickness (fig 6C, D).

DISCUSSION

The use of bovine material in the culture media, such as FBS or BPE, is a major concern throughout Europe as bovine spongiform encephalitis cannot be detected by any known in vitro tests. As such, European regulatory authorities prefer that cells cultured for clinical use avoid the use of bovine and other animal derived products, so as to reduce the risk of disease transmission. The use of HS as an alternative to bovine serum would help eliminate the need for bovine material in the culture process.
The ability of culture media to support the continued proliferation of cultivated cells in vivo is important for ensuring tissue regeneration following transplantation. Previous reports on epithelial equivalents have mainly focused on obtaining differentiated, stratified tissue constructs. However, terminally differentiated cells have limited proliferative potential, and few reports have focused on the ability of cultured cells to continue to proliferate in vivo. We found that conjunctival epithelial cells derived from HS supplemented cultures had comparable in vitro proliferative capacities compared to FBS and BPE supplemented cultures. In addition, transplanted HS derived conjunctival epithelial equivalents underwent a similar degree of stratification and proliferation compared to those derived from FBS and BPE supplemented cultures. These findings provide valuable information regarding the regenerative potential of these cells following transplantation.

HS supplemented medium was also found to support the proliferation of goblet cells. Goblet cells mainly appeared after several days in culture and formed clusters of up to 10 cells. These clusters suggest that bipotent conjunctival progenitor cells present in culture were able to retain their propensity towards goblet cell differentiation after several cell divisions.

The elimination of animal material from the culture process has significant advantages over existing serum supplemented culture methods. The use of HS to replace FBS in the culture process would help to reduce the risk of zoonotic infection. This raises the possibility of using autologous HS for cultivating cells for clinical use. These findings bring us one step closer towards the development of a safe and effective xenobiotic free bioengineered tissue equivalent for clinical transplantation.

Authors’ affiliations
L P K Ang, D T H Tan, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751, Singapore
L P K Ang, D T H Tan, Department of Ophthalmology, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
L P K Ang, D T H Tan, C J Y Seah, R W Beuerman, Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore
Financial support: Singapore Biomedical Research Council grants R268/12/2002 and 04/1/35/19/302.

The authors have no competing interest in any of the material discussed in the paper.

Meeting presentation: The material was presented in part at the annual meeting of the Association for Research in Vision and Ophthalmology (ARVO), 4–8 May 2003, Fort Lauderdale, FL, USA.

Ethical approval from the institutional review board of the Singapore National Eye Center was obtained for this study. Written informed consent was obtained from all patients who participated in this study.

REFERENCES
The use of human serum in supporting the in vitro and in vivo proliferation of human conjunctival epithelial cells
L P K Ang, D T H Tan, C J Y Seah and R W Beuerman

Br J Ophthalmol 2005 89: 748-752
doi: 10.1136/bjo.2004.055046

Updated information and services can be found at:
http://bjo.bmj.com/content/89/6/748

These include:

References
This article cites 29 articles, 15 of which you can access for free at:
http://bjo.bmj.com/content/89/6/748#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/