The angiopoietin/Tie-2 system in proliferative sickle retinopathy: relation to vascular endothelial growth factor, its soluble receptor Flt-1 and von Willebrand factor, and to the effects of laser treatment

J S Mohan, P L Lip, A D Blann, D Barendorf, G Y H Lip

Aim: To determine plasma levels of angiopoietin-1 and angiopoietin-2 (Ang-1, Ang-2), their soluble receptor Tie-2, vascular endothelial growth factor (VEGF), its soluble receptor Flt-1 (as indices of angiogenesis), and von Willebrand factor (vWF, marking endothelial damage/dysfunction) in sickle cell disease (SCD) patients with proliferative sickle retinopathy (PSR), with non-proliferative retinopathy (NPR), or no retinopathy (NR) and in control subjects with normal haemoglobin (AA subjects). In addition, to determine changes with panretinal laser photocoagulation (PRP) therapy.

Methods: Research indices were measured (ELISA) in 24 SCD patients who had PSR, 16 with NPR, 16 with NR, and from 23 AA subjects. Eight patients received PRP therapy and plasma was obtained before laser treatment and at 6 months after the last PRP session.

Results: Ang-1, Ang-2, VEGF, and vWF (but not Tie-2 or sFlt-1) were raised in SCD patients compared to AA subjects (p<0.01) but there were no differences among the three SCD subgroups. Significant correlations were between Ang-1 and VEGF, Ang-1 and Tie-2, and VEGF and sFlt-1 in patients with SCD (r=0.67–0.88). Plasma Ang-2, VEGF, sFlt-1, and vWF levels did not change, but Ang-1 fell and Tie-2 rose significantly following PRP therapy.

Conclusions: SCD patients have raised plasma angiopoietins (Ang-1, Ang-2), VEGF, and vWF compared to AA subjects. These indices did not differ according to severity of retinopathy and only limited changes occurred following PRP. The elevated growth factor levels in SCD may have obscured any association with retinopathy.

Changes in both plasma and intraocular VEGF levels have been related to laser treatment. VEGF interacts with endothelial cells via membrane spanning receptors Flt-1 and KDR and the role of Flt-1 in embryonic vasculogenesis and adult angiogenesis and its association with several diseases has been clearly established.

Angiopoietin-1 and angiopoietin-2 (Ang-1, Ang-2), members of another family of vascular growth factors, interact with the endothelial cell specific tyrosine kinase receptor Tie-2. Ang-1 acts via the Tie-2 receptor to remodel primitive vessels and help maintain and stabilise the mature vessels by promoting interaction between endothelial cells and surrounding support cells. Ang-2, conversely, leads to destabilisation of vessels and dissociation of pericytes, and is upregulated by hypoxia and angiogenic cytokines, including VEGF and in pathological angiogenesis associated with tumours and choroidal neovascularisation associated with age related macular degeneration. Thus, the precise balance of VEGF and the angiopoietin/Tie-2 system is essential for modulating growing vessels and maintaining the integrity of existing vessels, thereby determining whether vessels proliferate and become leaky.

Abnormally raised levels of VEGF have been reported in SCD but any role in associated eye disease is unclear. We therefore hypothesised abnormal Ang-1, Ang-2, sFlt-1, and Tie-2 in SCD, measuring VEGF as an effective positive control and vWF as an index of endothelial damage/dysfunction. We further hypothesised a graded increase in these markers in SCD patients with no retinopathy (NR), others with non-proliferative retinopathy (NPR), and others with proliferative sickle retinopathy (PSR). To test these hypotheses, we undertook a cross sectional study. Finally, we hypothesised that these indices fall after treatment with panretinal laser photocoagulation (PRP), and conducted a longitudinal study, measuring our research indices before and 6 months after laser treatment.

PATIENTS AND METHODS

Patients with SCD who attended the Sickle Cell and Thalassemia (SCAT) Centre were recruited. Diagnosis (HbS or HbSC) was proved using routine high performance liquid chromatography (HPLC). Patients were excluded if they had previously received laser treatment for proliferative retinopathy or had eye surgery, were receiving regular red cell exchange transfusion, had blood transfusion within the 1 month prior to study, or had an estimated creatinine clearance of less than 60 ml/min.

Abbreviations: Ang, angiopoietin; HbS, sickle haemoglobin; HPLC, high performance liquid chromatography; NPR, non-proliferative retinopathy; NR, no retinopathy; PRP, panretinal laser photocoagulation; PSR, proliferative sickle retinopathy; SCD, sickle cell disease; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor
The characteristic confirming feature of the diagnosis of peripheral retinal neovascularisation was intense hyperfluorescence caused by leakage of dye from new blood vessels. Patients with PSR who showed evidence of leakage on fluorescein angiogram ("leaky PSR") were offered laser treatment with sectoral panretinal photocoagulation (PRP). None of the patients had a painful crisis occasion on which a blood sample was taken. In patients with "leaky PSR" a blood sample was repeated at 5–7 (median 6) months after their last laser treatment. Blood samples were taken from the antecubital vein with minimal stasis into Vacuette tubes containing 3.2% sodium citrate and centrifuged at 3000 rpm at 4°C for 20 minutes. The platelet free plasma was immediately separated and frozen at −70°C. Research indices were measured by ELISA using commercially available reagents and recombinant standards (R&D Systems, Abingdon, UK).

Data are presented as mean (SD) or median (interquartile range (IQR)) and compared by the unpaired t test and by the Mann-Whitney U test, or the one way ANOVA and by the Student's unpaired t test.

Table 1 Plasma levels of angiopoietin-1 (Ang-1) angiopoietin-2 (Ang-2), the soluble angiopoietin receptor Tie-2 (Tie-2), vascular endothelial growth factor (VEGF), its soluble receptor Flt-1, and von Willebrand factor (vWF) in patients with sickle cell disease (SCD) and subjects with normal haemoglobin (AA)

<table>
<thead>
<tr>
<th></th>
<th>AA subjects</th>
<th>SCD patients</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 23) (IQR)</td>
<td>(n = 56) (IQR)</td>
<td></td>
</tr>
<tr>
<td>Ang-1 (ng/ml)</td>
<td>0.5 (0.5–2.5)</td>
<td>2.2 (1.0–11.4)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Ang-2 (ng/ml)</td>
<td>1.3 (1.0–2.0)</td>
<td>5.1 (2.3–7.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Tie-2 (ng/ml)</td>
<td>10.8 (10.0–12.0)</td>
<td>7.7 (5.5–28.3)</td>
<td>0.105</td>
</tr>
<tr>
<td>VEGF (gg/ml)</td>
<td>11 (10–110)</td>
<td>120 (72–780)</td>
<td><0.001</td>
</tr>
<tr>
<td>sfFlt-1 (ng/ml)</td>
<td>14.0 (4–140)</td>
<td>21.5 (2.5–420)</td>
<td>0.419</td>
</tr>
<tr>
<td>vWF (IU/dl)</td>
<td>89 (80–98)</td>
<td>143 (117.3–161)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The diagnoses of PSR, NPR, or no retinopathy (NR) were made using slit lamp biomicroscopy and fluorescein angiography. The characteristic confirming feature of the diagnosis of peripheral retinal neovascularisation was intense hyperfluorescence caused by leakage of dye from new blood vessels. Patients with PSR who showed evidence of leakage on fluorescein angiogram ("leaky PSR") were offered laser treatment with sectoral panretinal photocoagulation (PRP).

A volume of 10 ml of citrated venous blood was obtained for measurement of plasma Ang-1, Ang-2, Tie-2, VEGF, sFlt-1, and vWF. For patients with NR or with NPR, this was the only occasion on which a blood sample was taken. In patients with “leaky PSR” a blood sample was repeated at 5–7 (median 6) months after their last laser treatment. Blood samples were taken from the antecubital vein with minimal stasis into Vacuette tubes containing 3.2% sodium citrate and centrifuged at 3000 rpm at 4°C for 20 minutes. The platelet free plasma was immediately separated and frozen at −70°C. Research indices were measured by ELISA using commercially available reagents and recombinant standards (R&D Systems, Abingdon, UK).

Data are presented as mean (SD) or median (interquartile range (IQR)) and compared by the unpaired t test and by the Mann-Whitney U test, or the one way ANOVA and by the Student's unpaired t test.

Table 2 Plasma levels of angiopoietin-1 (Ang-1) angiopoietin-2 (Ang-2), the soluble angiopoietin receptor Tie-2 (Tie-2), vascular endothelial growth factor (VEGF), its soluble receptor Flt-1, and von Willebrand factor (vWF) in patients with different manifestations of sickle eye disease

<table>
<thead>
<tr>
<th></th>
<th>NR*</th>
<th>NPR†</th>
<th>PSR‡</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang-1 (ng/ml)</td>
<td>2.2 (0.6–10.4)</td>
<td>3.1 (1.2–13.8)</td>
<td>2.0 (1.0–11.3)</td>
<td>0.682</td>
</tr>
<tr>
<td>Ang-2 (ng/ml)</td>
<td>6.0 (4.1–9.3)</td>
<td>3.8 (2.0–10.0)</td>
<td>4.7 (2.1–7.4)</td>
<td>0.395</td>
</tr>
<tr>
<td>Tie-2 (ng/ml)</td>
<td>6.3 (5.0–36.0)</td>
<td>9.0 (6.1–31.5)</td>
<td>7.4 (5.9–22.0)</td>
<td>0.714</td>
</tr>
<tr>
<td>VEGF (gg/ml)</td>
<td>108 (61–728)</td>
<td>116 (72–2650)</td>
<td>137 (104–378)</td>
<td>0.748</td>
</tr>
<tr>
<td>sfFlt-1 (ng/ml)</td>
<td>35.0 (3–421)</td>
<td>16.5 (0.3–500)</td>
<td>18.8 (6.1–278)</td>
<td>0.941</td>
</tr>
<tr>
<td>vWF (IU/dl)</td>
<td>133 (108–164)</td>
<td>147 (113–166)</td>
<td>143 (122–161)</td>
<td>0.690</td>
</tr>
</tbody>
</table>

The PSR group comprised 22 with HbSC and two with Hb SS (11 men, mean age 35 (SD 11)). NPR comprised nine with HbSC disease and seven with Hb SS disease. The NR group comprised five with HbSC disease and seven with Hb SS disease (eight men, aged 32 (10) years). There were more patients with HbSC in the PSR group (p = 0.008) but the differences in sex and age were not significant (p = 0.936, p = 0.585 respectively).

* NR, no retinopathy; NPR, non-proliferative retinopathy; PSR, proliferative retinopathy. No retinopathy bilaterally; † no retinopathy unilaterally or NPR unilaterally or NPR bilaterally; ‡ unilateral or bilateral PSR. Values are median (IQR) except for age, which is expressed as mean (SD). All p values by Mann-Whitney U test except for age which is by the Student’s unpaired t test.
Kruskall-Wallis test as appropriate. Correlations were performed using Spearman’s rank correlation test. Paired comparisons were used using the paired Wilcoxon test.

RESULTS

Plasma levels of Ang-1, Tie-2, VEGF, sFlt-1, and vWF did not differ between the groups, although Ang-2 was higher in the SS patients (p = 0.025); therefore, data were pooled for further analysis. Plasma levels of Ang-1 and Ang-2 (but not Tie-2 or sFlt-1) were significantly raised in the SCD patients compared to levels in the AA subjects (table 1). As expected, VEGF and vWF were higher in SCD. The ratios of Ang-2 to VEGF, Ang-1 to VEGF, and between all three growth factors (that is [Ang-1/Ang-2]/VEGF) were increased in SCD generally. The observations of elevated plasma VEGF (up to 10-fold) and vWF in SCD patients (non-proliferative patients) confirm previous reports. The precise cause for the increased angiogenesis is unclear, but increased systemic tissue hypoxia consequent to generalised subclinical vaso-occlusion may contribute to the elevated plasma Ang-2 and VEGF levels. Marked endothelial damage/dysfunction is associated with SCD and endothelial proliferation as a means of effecting endothelial repair may be a mechanism for attempting to

<table>
<thead>
<tr>
<th>23 AA subjects</th>
<th>vWF</th>
<th>VEGF</th>
<th>sFlt-1</th>
<th>Ang-1</th>
<th>Ang-2</th>
<th>Tie-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>-0.026, 0.908</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sFlt-1</td>
<td>0.099, 0.624</td>
<td>0.627, 0.001*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ang-1</td>
<td>0.269, 0.145</td>
<td>0.505, 0.014*</td>
<td>0.483, 0.020*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ang-2</td>
<td>0.209, 0.0338</td>
<td>0.369, 0.083</td>
<td>0.244, 0.263</td>
<td>0.245, 0.260</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tie-2</td>
<td>-0.074, 0.739</td>
<td>0.546, 0.007*</td>
<td>0.526, 0.010*</td>
<td>0.501, 0.015*</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>56 SCD patients</th>
<th>vWF</th>
<th>VEGF</th>
<th>sFlt-1</th>
<th>Ang-1</th>
<th>Ang-2</th>
<th>Tie-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>0.120, 0.380</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sFlt-1</td>
<td>0.114, 0.401</td>
<td>0.882, <0.001*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ang-1</td>
<td>0.279, 0.037*</td>
<td>0.677, <0.001*</td>
<td>0.610, <0.001*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ang-2</td>
<td>0.165, 0.225</td>
<td>0.645, <0.001*</td>
<td>0.699, <0.001*</td>
<td>0.591, <0.001*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tie-2</td>
<td>0.317, 0.017</td>
<td>0.743, <0.001*</td>
<td>0.766, <0.001*</td>
<td>0.743, <0.001*</td>
<td>0.516, <0.001*</td>
<td>-</td>
</tr>
</tbody>
</table>

Data presented as Spearman correlation coefficient (r) followed by p values. *p Values < 0.05.

Ang-1: angiopoietin-1; Ang-2: angiopoietin-2; Tie-2: the angiopoietin receptor Tie-2; VEGF, vascular endothelial growth factor; sFlt-1, the VEGF receptor Flt-1; vWF, von Willebrand factor.

DISCUSSION

The current novel findings of elevated plasma Ang-2 in SCD, alongside raised VEGF, are consistent with the concept of increased angiogenic activity in SCD generally. The observations of elevated plasma VEGF (up to 10-fold) and vWF in SCD patients confirm previous reports. The precise cause for the increased angiogenesis is unclear, but increased systemic tissue hypoxia consequent to generalised subclinical vaso-occlusion may contribute to the elevated plasma Ang-2 and VEGF levels. Marked endothelial damage/dysfunction is associated with SCD and endothelial proliferation as a means of effecting endothelial repair may be a mechanism for attempting to
preserve endothelial homeostasis. As Ang-1 has been shown to have anti-apoptotic effects on endothelial cells,17 18 we speculate that because of the endothelial damage in SCD, Ang-1 levels are raised in order to provide this support. Our observation of a significant correlation between Ang-1 and vWF in SCD, but not in controls, lends support to this hypothesis.

Destabilisation of growing blood vessels by Ang-2, in the absence of VEGF, leads to vessel regression, whereas such destabilisation in the presence of high VEGF levels facilitates the angiogenic response.19 20 Thus, the precise balance of VEGF and the angiopoietin/Tie-2 system is important in determining whether or not vessels auto-infarct and regress/atrophy or proliferate and become leaky. We would therefore expect that in PSR patients, retinal vaso-oclusion leads to retinal ischaemia and hypoxia, which induces high levels of VEGF and Ang-2. Conversely, in patients without retinopathy, there might be relatively greater retinal vaso-oclusion possibly also accompanied by greater levels of auto-infarction—leading to less retinal ischaemia and less hypoxia than in PSR patients, and lower levels of VEGF and Ang-2 than in PSR patients. It follows that Ang-2, in the presence of very low levels of VEGF, might induce neovascular regression.

An “angiogenic index,” reflecting the ratio of Ang-2 to VEGF and/or the combined angiopoietins to VEGF might be indicators of the presence or development of PSR, with a low index (high Ang-2/high VEGF) indicating the tendency to new vessel proliferation and leakiness, and a high index (mid-high Ang2/low VEGF) indicating tendency to neovascular regression and atrophy. Our observations of lower ratios of the angiopoietins (individually or combined) in SCD compared to AA subjects as well as the trend of lower Ang-2/VEGF from “no retinopathy” to PSR is consistent with this. In SCD, the strong intercorrelations among the growth factors, suggest a high degree of coordinated and complementary angiogenic activity and perhaps a role for these factors in abnormal angiogenesis in SCD; however, no clear patterns emerged according to severity of retinopathy.

The role of the angiopoietins and their interaction with VEGF (if any) in retinal neovascularisation is not fully understood. In human retinal tissue, Ang-2 and Tie-2 expression appears to be associated with ischaemic retinal disorders19 and VEGF expression with abnormal proliferation in SCD.20 However, the idea that angiogenic activity is further heightened in SCD patients with PSR was not supported by the present findings. The observed lack of difference in any molecule among the SCD patients may be attributable to their existing elevated levels that may obscure any further increase in their levels in different eye conditions.

ACKNOWLEDGEMENTS

We thank the staff of the Sickle Cell and Thalassemia Centre, City Hospital, for their support of this research. We gratefully acknowledge the funding of the Sandwell and West Birmingham Hospitals NHS Trust Research and Development programme for the Haemostasis Thrombosis and Vascular Biology Unit.

Authors’ affiliations

J S Mohan, A D Blann, G Y H Lip, Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, The Birmingham and Midland Eye Centre, City Hospital, Birmingham B18 7QH, UK

J S Mohan, D Bareford, Department of Haematology, The Birmingham and Midland Eye Centre, City Hospital, Birmingham B18 7QH, UK

P L Lip, Department of Ophthalmology, The Birmingham and Midland Eye Centre, City Hospital, Birmingham B18 7QH, UK

Correspondence to: Professor G Y H Lip, University Department of Medicine, City Hospital, Birmingham B18 7QH, UK, g.y.h.lip@bham.ac.uk

Accepted 12 November 2004

REFERENCES

Table 5 The effect of laser treatment (PRP) on plasma levels of angiopoietin-1 (Ang-1) angiopoietin-2 (Ang-2), the soluble angiopoietin receptor Tie-2, VEGF, sFlt-1 and vWF in eight patients with sickle haemoglobin C disease with “leaky PSR”

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Baseline (pre-laser)</th>
<th>6 months post-laser</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vWF (IU/dl)</td>
<td>133 (113–152)</td>
<td>144 (138–148)</td>
<td>0.673</td>
</tr>
<tr>
<td>sFlt-1 (ng/ml)</td>
<td>15 (5–138)</td>
<td>0.1 (0.01–3.6)</td>
<td>0.402</td>
</tr>
<tr>
<td>VEGF (pg/ml)</td>
<td>120 (72–138)</td>
<td>115 (50–155)</td>
<td>0.834</td>
</tr>
<tr>
<td>Tie-2 (ng/ml)</td>
<td>6.0 (5.5–7.8)</td>
<td>10.0 (7.6–10.6)</td>
<td>0.022</td>
</tr>
<tr>
<td>Ang-2 (ng/ml)</td>
<td>3.6 (1.5–7.2)</td>
<td>1.1 (1.1–2.0)</td>
<td>0.022</td>
</tr>
<tr>
<td>Ang-1 (ng/ml)</td>
<td>1.2 (0.6–9.5)</td>
<td>0.5 (0.5–1.5)</td>
<td>0.106</td>
</tr>
<tr>
<td>Ang-2/VeGF</td>
<td>16.1 (12.2–101.1)</td>
<td>20.0 (9.3–22.5)</td>
<td>0.076</td>
</tr>
<tr>
<td>Ang-2/Ang-1</td>
<td>3.1 (1.0–4.3)</td>
<td>2.3 (0.77–2.7)</td>
<td>0.035</td>
</tr>
<tr>
<td>Ang-1/VEGF</td>
<td>16.4 (4.8–28.2)</td>
<td>10.8 (8.13–12.2)</td>
<td>0.151</td>
</tr>
<tr>
<td>(Ang-2/Ang-1 x 100)/VEGF</td>
<td>2.6 (0.5–8.0)</td>
<td>1.7 (0.6–4.6)</td>
<td>0.554</td>
</tr>
</tbody>
</table>

Values are median (IQR) except for age, which is expressed as mean (SD).

All p values by Wilcoxon’s paired test.

Table 5
Angiopoietin/Tie-2 in proliferative sickle retinopathy

Clinical Evidence — Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. *Clinical Evidence* needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:
- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with *Clinical Evidence* editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available. The *Clinical Evidence* in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.
- To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for *Clinical Evidence* or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for *Clinical Evidence*, please complete the peer review questionnaire at www.clinicaledge.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).
The angiopoietin/Tie-2 system in proliferative sickle retinopathy: relation to vascular endothelial growth factor, its soluble receptor Flt-1 and von Willebrand factor, and to the effects of laser treatment

J S Mohan, P L Lip, A D Blann, D Bareford and G Y H Lip

Br J Ophthalmol 2005 89: 815-819
doi: 10.1136/bjo.2004.058164

Updated information and services can be found at:
http://bjo.bmj.com/content/89/7/815

These include:

References
This article cites 19 articles, 11 of which you can access for free at:
http://bjo.bmj.com/content/89/7/815#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Ophthalmologic surgical procedures (1223)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/