Aims: To describe a technique for posterior lamellar keratoplasty donor preparation.
Methods: In an experimental study eight human donor research corneas were mounted onto an artificial anterior chamber and deep stromal pockets dissected. Four corneas were mounted in the standard endothelial side down orientation and dissected using standard instruments (group 1). Another four corneas were mounted endothelial side up and dissected using a flat spatula (group 2). Trephined lamellar graft thickness was assessed by ultrasound pachymetry. The grafts were also analysed using vital staining of the endothelium and standard histological preparation.
Results: Achieved posterior graft thickness was 118 (SD 32) μm (group 1) and 92 (23) μm (group 2) (p = 0.324). Percentage of devitalised endothelial cells was 0.86% (1.48%) (group 1) and 3.9% (2.9%) (group 2) (p = 0.185). The dissections using both harvesting techniques remained in plane and were smooth.
Conclusions: A blunt spatula and endothelium side up orientation on an artificial anterior chamber can be used to create posterior lamellar dissections without compromising endothelial cell number or planarity when compared to standard endothelium side down harvest.

For cases of pure endothelial damage, posterior lamellar keratoplasty (PLK) involves replacement of only the diseased endothelium along with some underlying posterior stroma, most often through a deep lamellar limbal incision, as an alternative to a full thickness penetrating graft.1–3 We describe a simplified technique, based on the approach proposed by Ignacio et al,4 for preparing the donor cornea for PLK, and evaluate it with regard to lamellar planarity and endothelial cell loss.

MATERIALS AND METHODS
Eight corneoscleral buttons stored in Optisol GS at 4°C and not suitable for clinical transplantation were obtained (Central Florida Lions Eye and Tissue Bank, Tampa, Florida; Donor Network of Arizona, Phoenix, AZ, USA) and divided into two groups. Ultrasonic pachymetry was used to measure the preoperative central corneal thickness after mechanical de-epithelialisation as well as after posterior lenticule removal.

Three buttons were mounted endothelial side down onto an artificial anterior chamber (Moria, Inc, France) and pressurised by air injection. Deep limbus to limbus lamellar dissections were carried out to approximately 80–90% depth using the three blade Melles lamellar keratoplasty set (Dorc, Netherlands) (group 1, n = 3).

Three buttons were mounted endothelial side up on the same chamber, pressurised with air and dissected limbus to limbus to 10–20% depth using a 2 mm wide Culler iris spatula (Katena, Denville, NJ, USA) after initial entry with a 3.0 mm steel keratome (Sharpoint, Reading, PA, USA) (group 2, n = 3). The endothelium was lubricated with Optisol throughout the procedure. After removal of the corneas from the artificial anterior chamber, all six posterior
Lenticules were then removed from the endothelial side using a 6.5 mm manual trephine (Surgistar, Carlsbad, CA, USA). Endothelial cell damage after graft harvest was assessed by staining with trypan blue 0.25% (Sigma-Aldrich, Inc, St Louis, MO, USA) and alizarin red S 0.2% (Sigma-Aldrich, Inc). Two corneoscleral buttons underwent stromal pocket dissection as described above but without trephination and were submitted for routine histological processing and staining with periodic acid Schiff (PAS).

RESULTS
The average harvested lenticule thickness was 118 (SD 32) μm (group 1) and 92 (23) μm (group 2) (Student’s t test, p = 0.324). Percentage of devitalised endothelial cells was 0.86% (1.48%) (group 1) and 3.9% (2.9%) (group 2) (p = 0.185). The dissections using each of the two harvesting techniques remained in single deep lamellar planes and were equally smooth (fig 1).

DISCUSSION
Here we describe a technique for harvesting donor tissue for posterior lamellar keratoplasty in which a corneoscleral button is mounted onto an artificial anterior chamber endothelial side up and stromal dissection is accomplished with a simple blunt spatula. The planarity and endothelial cell loss associated with the harvest appear comparable to previously described techniques. This modified method is advantageous in that a standard re-usable blunt corneal dissector is employed without the added complexity and cost associated with sharp, disposable three knife sets. Furthermore, the orientation of the endothelium up on the anterior chamber allows greater surgeon control during the harvest.

REFERENCES

Authors’ affiliations
O Suwan-apichon, M Rizen, J M G Reyes, S Herretes, A Behrens, W J Stark, R S Chuck, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
O Suwan-apichon, Department of Ophthalmology, Khon Kaen University, Khon Kaen, Thailand

Support: NIH Grant EY000412-04, Stark-Mosher Center for Cataract and Corneal Diseases, Research to Prevent Blindness Inc unrestricted grant.

Correspondence to: Roy S Chuck, MD, PhD, Wilmer Eye Institute, Johns Hopkins University, 3-127 Jefferson Building, 600 North Wolfe Street, Baltimore, MD 21287-9278, USA; rchuck1@jhmi.edu

Accepted for publication 1 February 2005

Video reports
To view the video reports in full visit our website www.bjophthalmol.com and click on the link to the video reports.
- Suture of a Subluxated Posterior Chamber Lens within the Capsular Bag. LE Fernández de Castro, KD Solomon
- Ocular Onchocerciasis: Anterior Chamber Microfilariae. WJ Flynn, HD Dillon
- The presenting features of multiple sclerosis. VJM Barrett, J Walker, JS Elton
- Removal of INTACS: Stepped surgical complexity demonstrated with three cases. L Ilari, J C McAlister, D S Gartry
- The Nuclear Slide: A novel approach for unleashing the potential of the hydrodissection wave. A Naseri
- Giant pleomorphic adenoma of the lacrimal gland: pre- and post-operative function. A Jain, V I Nehru, U N Saikia, C E E Reddy
- Limbal-sparing lamellar keratoplasty. S L Watson, S Rauz, J Dart

www.bjophthalmol.com
A new donor cornea harvesting technique for posterior lamellar keratoplasty

O Suwan-apichon, M Rizen, J M G Reyes, S Herretes, A Behrens, W J Stark and R S Chuck

*Br J Ophthalmol* 2005 89: 1100-1101
doi: 10.1136/bjo.2004.064337

Updated information and services can be found at:
http://bjo.bmj.com/content/89/9/1100

These include:

**References**
This article cites 5 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/89/9/1100#BIBL

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Topic Collections**
Articles on similar topics can be found in the following collections

- Ophthalmologic surgical procedures (1223)

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/