The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide

A E Fung, P J Rosenfeld, E Reichel

WORLD VIEW

The International Intravitreal Bevacizumab Safety Survey has been given for the treatment of neovascular and exudative ocular diseases since May 2005. Since then, the use of intravitreal bevacizumab has spread worldwide, but the drug-related adverse events associated with its use have been reported only in a few retrospective reviews. The International Intravitreal Bevacizumab Safety Survey was initiated to gather timely information regarding adverse events from doctors around the world via the internet.

Methods: An internet-based survey was designed to identify adverse events associated with intravitreal bevacizumab treatment. The survey web address was disseminated to the international vitreoretinal community via email. Rates of adverse events were calculated from participant responses.

Results: 70 centres from 12 countries reported on 7113 injections given to 5228 patients. Doctor-reported adverse events included corneal abrasion, lens injury, endophthalmitis, retinal detachment, inflammation or uveitis, cataract progression, acute vision loss, central retinal artery occlusion, subretinal haemorrhage, retinal pigment epithelium tears, blood pressure elevation, transient ischaemic attack, cerebrovascular accident and death. None of the adverse event rates exceeded 0.21%.

Conclusion: Intravitreal bevacizumab is being used globally for ocular diseases. Self-reporting of adverse events after intravitreal bevacizumab injections did not show an increased rate of potential drug-related ocular or systemic events. These short-term results suggest that intravitreal bevacizumab seems to be safe.

To gather timely information on the adverse events related to the use of intravitreal bevacizumab from doctors around the world via the internet, we initiated the International Intravitreal Bevacizumab Survey.

METHODS

Approval for the International Intravitreal Bevacizumab (Avastin) Safety Survey was obtained from the institutional review board or ethics committee of the California Pacific Medical Center, San Francisco, California, USA. Possible adverse events associated with intravitreal bevacizumab treatment for ocular diseases were identified and a web-based survey was conducted. The website address with a request for participation in the survey was initially sent via email to clinical sites using bevacizumab, but the information was subsequently disseminated via email throughout the international vitreoretinal community.

The questionnaire first requested identifying information from the site to allow verification of data and then requested information on the number of patients treated, the number of bevacizumab injections given and the number of specific adverse events identified at that centre since intravitreal bevacizumab was first used. A third page was then generated by the website software to request specific details on the severity and outcomes of each adverse event reported (figs 1–3). To protect this sensitive information, site identifiers were separated from the data after verifying the data and screening for redundant submissions.

Abbreviations: AMD, age-related macular degeneration; CVA, cerebrovascular accident; DVT, deep venous thrombosis; TIA, transient ischaemic attack
To create the form, host the site and securely store the data, an internet company specialising in this technology was employed (FormRouter, Cary, North Carolina, USA). FormRouter engineers programmed the website and securely stored the data. The FormRouter staff did not have access to the database once information was entered by the participating doctors. Client software was used by AEF to intermittently download the information into a database. After screening for redundant submissions, data were compiled, identifying information removed, and adverse event incidence rates were calculated. Initial identifying information was sufficiently detailed to prevent bogus submissions.

RESULTS
From November 2005 to April 2006, 70 centres representing 12 countries on 4 continents responded to our request for participation. The total number of injections reported was 7113 in 5228 patients. Centres reported on a mean of 75 patients, median 40 (range 1–506) patients, and a mean of 102 injections, median 50 (range 1–691) injections. Participating centres reported a range of follow-up from 1 to 7 (median 3.0, mean 2.8) months. A mean follow-up of 3.5 months per patient was calculated when the number of patients per centre was considered. Table 1 shows the rates of specific adverse events.

Adverse events were divided into two groups—procedure-related and possible drug-related. The possible drug-related adverse events were divided further into ocular and systemic events.

Potential procedure-related adverse events included corneal abrasion (n = 11 (0.15%)), lens injury (n = 1 (0.01%)), endophthalmitis (n = 1 (0.01%)) and retinal detachment (n = 3 (0.04%)), mild surface discomfort (n = 10 (0.14%)) and subconjunctival haemorrhage (n = 2 (0.03%)). The lens injury occurred when the lens capsule was damaged by the needle during the injection. A pars plana lensectomy with sulcus-fixated intraocular lens was required to repair the resulting cataract. The only case of endophthalmitis developed 5 days after treatment and required pars plana vitrectomy. Three retinal detachments were reported for an incidence of 0.04%. Two patients developed large subconjunctival haemorrhages after treatment. These adverse events related to the injection procedure are in the expected range for intravitreal injections.18

Ocular adverse events possibly related to bevacizumab included episodes of inflammation (n = 10 (0.14%)), cataract
progression (n = 1 (0.01%)), acute vision loss (n = 5 (0.07%)), central retinal artery occlusion (n = 1 (0.01%)),
new or progressive subretinal haemorrhages (n = 4 (0.06%))
and tears of the retinal pigment epithelium (n = 4 (0.06%)).
The cases of inflammation were graded mild to moderate,
occurred between 2 and 7 days after the treatments, and
lasted no longer than 1 week. None of the cases featured
hypopyon nor progressed to endophthalmitis. The case of
cataract progression occurred in a patient with a pre-existing
mature cataract.

Five episodes of acute vision loss were reported. Two
patients experienced decreased vision owing to subretinal
bleeding 2 days after treatment. Another case occurred
3 weeks after treatment despite improvement on optical
coherence tomography without evidence of ischaemia on
fluorescein angiography. A fourth case occurred for unknown
reasons and the fifth case was diagnosed as progression of
pre-existing geographical atrophy.

One central retinal artery occlusion was reported within
1 week of injection. Four tears of the retinal pigment
everthelium were documented, three of which occurred within
1 month of treatment. Four cases of subretinal haemorrhage
were documented.

Systemic adverse events possibly related to bevacizumab
included mild blood pressure increase (n = 15 (0.21%)),
transient ischaemic attack (TIA; n = 1 (0.01%)), CVAs (n = 5
(0.07%)) and deep venous thrombosis (DVT) (n = 1 (0.01%)).
Episodes of raised systolic blood pressure did not exceed
200 mm Hg and were reported as mild. The TIA occurred
1 day after treatment in a patient with uncontrolled
hyperlipidaemia. After the TIA resolved, the patient con-
tinued to receive at least one additional injection without
another event. Four cases of CVA occurred between 1 and
10 days after treatment. Most cases required hospitalisation
but did not result in disability. One death occurred as a
consequence of a CVA, but this patient was at high risk owing
to pre-existing atrial fibrillation with mural thrombosis. The patient had refused coumadin treatment and insisted on receiving intravitreal bevacizumab despite the potential risks. The fifth CVA was evolving on the day of injection, but the patient ignored the symptoms at the time of injection and fortunately had no major subsequent impairment. One recurrent DVT was reported in a patient with a history of DVT. No cases of myocardial infarction were reported.

Two deaths (0.03%) were reported. The first patient died 3 weeks after injection as a result of pneumonia. He was hospitalised with pneumonia and subsequently died, with the cause of death listed as cardiopulmonary arrest. The second patient had a CVA that was previously described.

Data were rapidly transferred without incident from the internet company managing the site into an Access database. Only three redundant submissions were discovered. These were found to be a result of redundant doctor entries, not software malfunction. Redundant submissions were manually screened by verification of identifiers, such as the name of the submitting doctor, before entering the information into the final database. Most of the data were collected within the first month of the email request. Sixty one centres reported 6090 injections on 4576 patients during the first month of data collection. The rate of response is unknown as the email was originally sent to a defined number of centres, but was then subsequently disseminated via email and list servers to an unknown number of recipients.

DISCUSSION

The International Intravitreal Bevacizumab Safety Survey, a survey of retina doctors using off-label intravitreal bevacizumab, found no short-term evidence of an increase in potential drug-related systemic adverse events beyond the incidence rates expected for an elderly population. The adverse events that were identified were expected and mostly related to the injection procedure. Corneal abrasion was probably related to the anaesthetic or antiseptic preparation before the intravitreal injections. Even the rates of the expected injection-related adverse events were lower than those reported in a 1-year study on patients with AMD treated with pegaptanib. In addition, cases of intraocular...
inflammation after intravitreal bevacizumab were low—
lower than those reported after treatment with intravitreal
injections of ranibizumab in early phase I/II studies.26 These
results suggest that intravitreal bevacizumab treatment
seems safe over the short term.

Although the annualised rates cannot be estimated, these
data for short-term follow-up are encouraging. In this survey,
the reported rates of systemic adverse events were 0.01% for
TIAs, 0.07% for CVAs, 0% for myocardial infarctions and 0.03% for
deaths. Unfortunately, specific incidence rates of systemic
thromboembolic events for an elderly population remain
unknown despite attempts to estimate them. Gragoudas et al.27
published a 10% incidence of hypertensive disorders, 2–39%
incidence of haemorrhagic adverse events and 6% incidence of
thromboembolic events after 1 year of using pegaptanib
sodium. A Health, United States publication by the National
Center for Health Statistics, Hyattsville, Maryland, USA, and
the Center for Disease Control and Prevention, Atlanta,
Georgia, USA, in 2005 only stated death rates for all age
groups through 2002—the all-ages death rate from heart
disease was 0.24% and that from stroke 0.056%. Specific data
about the incidence of heart disease or stroke events were not
published, only death rates from these events.22

We acknowledge the limitations of this study, including
self-reporting of adverse events, which may cause under-
reporting owing to concern for medico-legal liability or the
human tendency not to publicly acknowledge adverse events
in clinical practice. Furthermore, all responses were voluntary,
did not require a systematic chart review and represented varying periods of follow-up. But given these
limitations, the survey has provided a report of real-world
incidence of haemorrhagic adverse events and 6% incidence of
thromboembolic events after 1 year of using pegaptanib
sodium. A Health, United States publication by the National
Center for Health Statistics, Hyattsville, Maryland, USA, and
the Center for Disease Control and Prevention, Atlanta,
Georgia, USA, in 2005 only stated death rates for all age
groups through 2002—the all-ages death rate from heart
disease was 0.24% and that from stroke 0.056%. Specific data
about the incidence of heart disease or stroke events were not
published, only death rates from these events.22

We acknowledge the limitations of this study, including
self-reporting of adverse events, which may cause under-
reporting owing to concern for medico-legal liability or the
human tendency not to publicly acknowledge adverse events
in clinical practice. Furthermore, all responses were voluntary,
did not require a systematic chart review and represented varying periods of follow-up. But given these
limitations, the survey has provided a report of real-world
complications after intraocular bevacizumab treatment.

Although this safety survey did not demand the rigours of
a clinical research protocol, perhaps the adverse event rates
are illustrative of real-world observations and experiences.
Ideally, ophthalmologists would have complete knowledge of
all systemic diseases for which patients are treated through
communication with medical colleagues. In reality, doctors’
access to a patient’s medical history is limited to that to which
a patient is able to report. Given these shortcomings, this real-
world collection of adverse events data presents a safety-
profile snapshot that does not show an alarming short-term
signal regarding ocular or systemic adverse events after the
use of intravitreal bevacizumab. It should be acknowledged
that this survey represents a short-term follow-up between 2
and 4 months, and is not intended to expose potential
systemic effects that could be associated with monthly
chronic dosing of intravitreal bevacizumab.

A search of PubMed did not disclose any previous studies of
a doctor-organised, internet-based system for reporting adverse
events related to the use of a drug. However, email and internet
technologies have been used to assist the medical community
in gathering timely global data about medical errors and
patient-reported symptoms in a drug trial. The internet was
used to examine medical errors in 54 neonatal intensive care
units in a geographical area.23 Health professionals were asked
to contribute voluntarily and anonymously via a secure
website, which led to the discovery of a broad range of medical
events. Another study achieved almost 80% patient participa-
tion via the internet to collect self-reports by patients of
toxicity-related symptoms during a chemotherapy drug trial.24

Our collaboration with FormRouter, a form management
process company, which customarily assists business clients
with secure transfer of client inquiries and financial informa-
tion, allowed a scientific question to be answered quickly and
efficiently by using pre-existing technology. Furthermore,
participating doctors and their staff were able to navigate
the website without difficulty; no requests for clarification of how
to use the internet questionnaire were received. This study
shows the ability of the internet to rapidly, easily and securely
acquire information on disease processes and novel treatment
strategies, including worldwide experiences with different
drugs.

In summary, the self-reporting of adverse events via the
internet after intravitreal bevacizumab injections did not show an increased rate of potential drug-related ocular or
systemic events beyond that expected in an elderly popula-
tion. These short-term results suggest that intravitreal
bevacizumab seems to be safe.

Authors’ affiliations
A E Fung, Pacific Eye Associates, San Francisco, California, USA
P J Rosenfeld, Department of Ophthalmology, Bascom Palmer Eye
Institute, Miller School of Medicine, University of Miami, Miami, Florida,
USA
E Reichel, Department of Ophthalmology, New England Eye Center,
Tufts University Medical Center, Boston, Massachusetts, USA

Funding: This study was financially supported by the Pacific Vision
Foundation.

Competing interests: AEF and ER have participated in Genentech-
sponsored scientific advisory boards, for which they received honoraria
and reimbursement. For travel expenses, EJR has received clinical
research support from Genentech and reimbursement of travel expenses
and honoraria from Genentech for participation in scientific advisory
boards.

This work was presented in part at Angiogenesis 2006, Miami, Florida,
USA (February 2006). It was also presented in poster format at the
annual meeting of the Association for Research in Vision and
Ophthalmology in Fort Lauderdale, Florida, USA (May 2006).

REFERENCES
1 Rosenfeld PJ, Fung AE, Puliafito CA. Optical coherence tomography findings
after an intravitreal injection of bevacizumab (avastin) for macular edema
from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging
2005;36:336–9
2 Rosenfeld PJ, Moshefghii AA, Puliafito CA. Optical coherence tomography
findings after an intravitreal injection of bevacizumab (avastin) for
neovascular age-related macular degeneration. Ophthalmic Surg Lasers
Imaging 2005;36:331–5
3 Avery RL, Pieramici DJ, Rabena MD, et al. Intravitreal bevacizumab (Avastin)
for neovascular age-related macular degeneration. Ophthalmology
2006;113:263–72
4 Manzana IF, Payne GA, Khan P, et al. Testing intravitreal toxicity of
bevacizumab (Avastin). Retina 2006;26:257–61
penetration studies following intravitreal injection of bevacizumab (Avastin).
Retina 2006;26:262–9
6 Maturi RK, Bleau LA, Wilson DL. Electrophysiologic findings after intravitreal
bevacizumab (Avastin) treatment. Retina 2006;26:270–4
7 Spaide RF, Fisher YL. Intravitreal bevacizumab (Avastin) treatment of
proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina
2006;26:275–8
8 Irnoumide D, Spaide RF, Meyerle CB, et al. Intravitreal bevacizumab (Avastin)
treatment of macular edema in central retinal vein occlusion: a short-term
study. Retina 2006;26:279–84
9 Avery RL. Regression of retinal and iris neovascularization after intravitreal
bevacizumab (Avastin) treatment. Retina 2006;26:352–4
10 Mason JO III, Albert MA Jr, Vail R. Intravitreal bevacizumab (Avastin) for
refractory pseudophakic cystoid macular edema. Retina 2006;26:356–7
11 Kahook MY, Schuman JS, Naecke RJ. Intravitreal bevacizumab in a patient with
12 Spaide RF, Laird K, Fine HF, et al. Intravitreal bevacizumab treatment of
choroidal neovascularization secondary to age-related macular
degeneration. Retina 2006;26:383–90
13 Rich RM, Rosenfeld PJ, Puliafito CA, et al. Short-term safety and efficacy of
intravitreal bevacizumab (Avastin) for neovascular age-related macular
degeneration. Retina 2006;26:495–511
therapy for neovascular age-related macular degeneration: twelve-week
results of an uncontrolled open-label clinical study. Ophthalmology
2005;112:1035–47
16 Spitzer MS, Wallenfels-Thilo B, Sierra A, et al. Antiproliferative and cytotoxic
properties of bevacizumab (avastin) on different ocular cells. Br J Ophthalmol
2006.
The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide
A E Fung, P J Rosenfeld and E Reichel

Br J Ophthalmol 2006 90: 1344-1349 originally published online July 19, 2006
doi: 10.1136/bjo.2006.099598

Updated information and services can be found at:
http://bjo.bmj.com/content/90/11/1344

References
This article cites 20 articles, 2 of which you can access for free at:
http://bjo.bmj.com/content/90/11/1344#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/