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Light deprivation has long been considered a potential
treatment for patients with inherited retinal degenerative
diseases, but no therapeutic benefit has been demonstrated
to date. In the few clinical studies that have addressed this
issue, the underlying mutations were unknown. Our rapidly
expanding knowledge of the genes and mechanisms
involved in retinal degeneration have made it possible to
reconsider the potential value of light restriction in specific
genetic contexts. This review summarises the clinical
evidence for a modifying role of light exposure in retinal
degeneration and experimental evidence from animal
models, focusing on retinitis pigmentosa with regional
degeneration, Oguchi disease, and Stargardt macular
dystrophy. These cases illustrate distinct pathophysiological
roles for light, and suggest that light restriction may benefit
carefully defined subsets of patients.
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I
t was first suggested over a century ago that
light exposure might modify the course of
disease in patients with retinal degeneration,1

implying a possible therapeutic benefit of light
deprivation. Four small studies have investigated
this hypothesis in patients with retinitis pigmen-
tosa (RP), a group of hereditary retinal dystro-
phies characterised by progressive photoreceptor
degeneration, night blindness, visual field con-
striction, and electroretinographic (ERG)
abnormalities, with rods affected earlier than
cones. Berson2 used an opaque scleral contact
lens to occlude one eye for 6–8 hours per day for
5 years in two young adults with RP. Progression
of disease was symmetrical in both patients.2 A
shorter trial using monocular sunglasses worn by
three children with RP for 3 months also showed
no protection.1

A third report described a man with RP who
had sustained trauma to the anterior segment of
the right eye at age 7, resulting in occlusion of
the pupil by a thick membrane. Surgical correc-
tion and physiological testing 42 years later
revealed that the retina had been protected by
a 1.2 log unit filter. Fundus examination and
ERG offered no evidence that degeneration had
been slowed in the occluded eye.3 In the fourth
study, 13 RP patients wore a brown contact lens
with low transmission on one eye for 1–3 years.
In eight patients, the rate of visual field loss was
reported to be slower in the light restricted eye.4

However, other measures of visual function were
not used, and these data await confirmation.

No benefit of light deprivation has been
convincingly demonstrated in patients with RP.

However, the underlying genetic defect was not
defined for any of the patients in these trials. It is
now known that RP exhibits extraordinary
genetic heterogeneity (http://www.sph.uth.tmc.
edu/Retnet), and it remains possible that light
deprivation could be beneficial for patients with
certain mutations. This idea has received con-
siderable support in recent years from animal
studies. For some models of retinal degeneration,
the progression of disease is indeed slowed by
darkness, accelerated by bright light, or both.
Several of these animal models carry mutations
also found in patients.

Table 1 lists mammalian animal models of
inherited retinal degeneration for which the
effects of light have been assessed in peer
reviewed studies. For three well characterised
groups of models, the animal data are discussed
in detail below, together with studies of patients
carrying mutations in the corresponding genes.
The literature on retinal damage by constant
light in wild type albino rodents has been
reviewed recently5 6 and will not be discussed
further. Mutations that cause light dependent
retinal degeneration in the fruit fly Drosophila
melanogaster7 are also outside the scope of this
paper.

AUTOSOMAL DOMINANT RP:
RHODOPSIN MUTATIONS ASSOCIATED
WITH REGIONAL DEGENERATION
Rhodopsin (RHO) mutations are a common
cause of autosomal dominant RP (ADRP),
accounting for some 25% of families in the
United States.76 77 The change of proline to
histidine at codon 23 (Pro23His, P23H) is found
in the most common American mutant allele.35 78

Several mutations including P23H cause a dis-
tinctive phenotype classified by Cideciyan and
colleagues as class B1.79 Typical features include
slower progression and better visual function
compared to other forms of ADRP; more rapid
degeneration in the inferior than in the superior
retina, correlating with earlier loss of the super-
ior visual field; and delayed dark adaptation.79–90

However, some patients with the P23H mutation
have a more uniform distribution of relatively
mild degeneration, possibly representing an early
stage of disease.79

It has been proposed that the faster progres-
sion of disease in the inferior retina may result
from a modifying effect of light. This argument

Abbreviations: ADRP, autosomal dominant retinitis
pigmentosa; ERG, electroretinography; N-ret-PE, N-
retinylidene-phosphatidylethanolamine; RHO, rhodopsin;
RK, rhodopsin kinase; RmP, rim protein; RP, retinitis
pigmentosa; RPE, retinal pigment epithelium; STGD,
Stargardt disease
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holds that since most light sources are located in the superior
visual field, the inferior retina experiences greater exposure,
accelerating the degeneration.29 79 80 90–92 Additional clinical
evidence for this hypothesis has come from a case series
describing two families with the P23H mutation.80 In one
family, a 28 year old man with an 8 year history of bright
light exposure as a lifeguard and ski instructor had more
advanced disease than his 52 year old mother. In the other
family, one patient had atypical disease, with preferential loss
of the inferior visual field and more advanced fundus
changes in the superior retina. This patient had served in
the navy, and had a history of bright light exposure in the
inferior visual field from sunlight reflected from water and
welding repairs to flooring.

Studies of three animal models of class B1 RP have
demonstrated modification of degeneration by light. ‘‘VPP
mice’’ carry a murine opsin transgene with the P23H
mutation, together with two other mutations (Val20Gly
and Pro27Leu) not known to be pathogenic. Like class B1
patients, they exhibit dominantly inherited retinal degnera-
tion,32 more rapid photoreceptor loss in the inferior retina

when housed with overhead lighting,33 and delayed dark
adaptation.93 Rearing VPP mice in the dark slows, but does
not completely prevent, the degeneration. Dark rearing also
eliminates the difference between superior and inferior
retina, supporting the conclusion that this difference is due
to greater light exposure in the inferior retina.33 A 24 hour
exposure to bright light that has no effect on wild type
littermates accelerates the degeneration in VPP mice.34

Analysis of rats carrying a murine opsin transgene with the
P23H mutation has yielded results similar to those from the
VPP mice. Dark rearing slows the rate of degeneration in
P23H rats,38 while exposure to bright light accelerates it.38–41

Degeneration is slower in very dim light compared to
moderate room light.42

The third animal model offers a particularly dramatic
example of the effects of light. A naturally occurring
dominant retinal degeneration in English Mastiff dogs is
caused by a RHO mutation that changes threonine to arginine
in the fourth codon (Thr4Arg, T4R).28 This mutant is likely to
have properties similar to Thr4Lys (replacing threonine
with lysine, which like arginine is positively charged at

Table 1 Effects of light exposure on animal models of retinal degeneration

Gene product (symbol) Mutation Species Findings* Human counterpart�

Modified by light
Arrestin (Sag) Knockout8 Mouse Protection by DR9 Oguchi disease,11 ARRP12

Exacerbation by light9 10

ATP/GTP binding protein 1
(Agtpbp1, Nna1)

Putative regulatory
mutation (pcd1J)13

Mouse Exacerbation by light14 Unknown

Crumbs homologue 1
(Crb1)

Knockout15 Mouse Exacerbation by light15 LCA, RP12, RPCEV,16 PPCA17

Mertk (Mertk) Deletion18 Rat Protection by DR19–21 ARRP24

Exacerbation by light21–23

Rds/peripherin (Rds) Insertion25 Mouse No protection by DR26

Exacerbation by light26

Several forms of retinal dystrophy27

Rhodopsin (RHO) Thr4Arg (T4R)28 Dog Exacerbation by light29 ADRP30 31

Rhodopsin (Rho) Val20Gly, Pro23His,
Pro27Leu (VPP)32

Mouse (tg) Protection by DR33

Exacerbation by light34

ADRP35

Rhodopsin (Rho) Pro23His (P23H)36 37 Rat (tg) Protection by DR38

Exacerbation by light38–42

ADRP35

Rhodopsin kinase (Grk1,
Rhok)

Knockout43 Mouse Protection by DR43

Exacerbation by light10 43

Oguchi disease44

Rim protein (Abca4, Abcr) Knockout45 Mouse Prevention of A2E accumulation by DR46 Stargardt disease and other retinal
dystrophies47

RPE65 (Rpe65) Knockout48 Mouse Protection by DR49

Resistance to light damage50

LCA, early onset severe retinal
dystrophy51

Solute carrier family 6,
taurine transporter (Slc6a6,
Taut)

Knockout52 Mouse Protection by DR53 Unknown

Tubby (Tub) Splice donor site
mutation54 55

Mouse Protection by DR56 ARRP,57 58 LCA59`

Unknown Nervous mutation (nr)60 Mouse No protection by DR61

Exacerbation by light14

Unknown

Not modified by light
Ceroid lipofuscinosis,
neuronal 8 (Cln8)

Frameshift62 Mouse No protection by DR63 NCL-8,62 vLINCL64

Microphthalmia associated
transcription factor (Mitf)

Asp222Asn (D222N)65 Mouse No protection by DR66 Waardenburg syndrome type II,67 Tietz
syndrome68

Rhodopsin (Rho) Lys296Glu (K296E)69 Mouse (tg) No protection by DR69 ADRP70

Rhodopsin (Rho) Ser334ter71 Rat (tg) No protection by DR38 72 ADRP1

No exacerbation by light in most
experiments38 41 73

Rhodopsin (Rho) Knockout74 Mouse Resistance to light damage50 ARRP75

ADRP, autosomal dominant retinitis pigmentosa; ARRP, autosomal recessive retinitis pigmentosa; DR, dark rearing; LCA, Leber congenital amaurosis; NCL,
neuronal ceroid lipofuscinosis; PPCA, pigmented paravenous chorioretinal atrophy; RP12, retinitis pigmentosa type 12; RPCEV, retinitis pigmentosa with Coats-
like exudative vasculopathy; tg, transgenic; vLINCL, Turkish variant late infantile neuronal ceroid lipofuscinosis.
*‘‘Protection’’ does not necessarily imply complete rescue. Light exposure protocols vary among studies, but ‘‘exacerbation by light’’ refers to accelerated
degeneration in light brighter than that used for routine animal housing in a given study. Because sufficiently bright light can cause retinal damage in wild type
animals,6 only cases in which exacerbation of degeneration significantly exceeds the damage produced in wild type controls by the same light regimen are
included.
�Except where noted, the listed human diseases arise from mutations in genes orthologous to those mutated in the respective animal models. Phenotypes may not
correspond precisely. Where more than one human disease is listed, these represent alternative phenotypes arising from mutations in the same gene.
`These phenotypes are associated with mutations in the human gene TULP1 (Tubby-like protein 1), which is related to mouse Tub, but not orthologous.
1Ser334ter transgenic rats exhibit dominant retinal degeneration, but this mutation has not been reported in human RP.
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physiological pH), a mutation identified in human ADRP
with regional degeneration.30 31 The T4R dog resembles
human class B1 RP in having delayed dark adaptation after
bright flashes, and regional photoreceptor loss.28 Cideciyan
and colleagues used this large animal model to ask whether
light exposure at levels routinely encountered in ophthalmo-
logical clinical settings could accelerate the course of
disease.29 They found that standard fundus photography in
young dogs, before the usual onset of photoreceptor loss in
this model, caused rapid and severe degeneration restricted to
the photographed areas, with a sharp boundary separating
damaged from normal appearing retina. Similar results were
obtained with prolonged focal light exposures comparable to
indirect ophthalmoscopy, but not with a standard ERG
protocol that delivered a much lower light dose.29

The mechanisms of photoreceptor death arising from RHO
mutations associated with the class B1 phenotype are
incompletely understood. When expressed in heterologous
cells in culture, the mutant opsins are prone to misfolding
and aggregation, regenerate poorly with 11-cis-retinal, and
are inefficiently transported to the plasma membrane, unlike
the wild type protein.94–98 P23H is targeted for degradation by
the ubiquitin proteasome system, but also impairs this critical
pathway, and may interfere with the processing of normal
opsin.97 98 Photoreceptors may be poorly suited to degrade
large amounts of misfolded, mislocalised, or aggregated
opsin, because under normal circumstances, most opsin is
shed with the outer segment discs and degraded by the
retinal pigment epithelium (RPE).78 Protein misfolding and
aggregation have been implicated in the pathogenesis of
several neurodegenerative diseases.99

Light could accelerate degeneration through non-specific
toxicity to photoreceptors already stressed by the effects of a
mutation, or through a specific interaction with mutant
rhodopsin. Experiments with cultured photoreceptors have
suggested that activation of mislocalised rhodopsin could kill
rods by stimulating inappropriate signalling pathways.100

Mislocalisation has been detected in mice carrying a human
P23H opsin transgene101 102 and possibly in VPP mice,103 but
not in P23H rats72 or T4R dogs.28 Postmortem analysis of the
retina from a patient with the class B1 associated mutation,
Thr17Met, did not demonstrate rhodopsin mislocalisation in
rods that had not degenerated at the time of death.90

Alternatively, mutant rhodopsin may cause abnormalities
of phototransduction. ERG analyses of VPP mice and P23H
patients have suggested that the lifetime of activated
rhodopsin is prolonged, although it could not be determined
whether this species represented mutant rhodopsin, the
normal protein, or both.104 105 Photoexcited rhodopsin triggers
the phototransduction cascade by activating transducin.
When VPP mice are crossed with knockout mice lacking
functional transducin, introducing a genetic block of the
cascade, their degeneration in standard cyclic lighting is
slowed, supporting a role for phototransduction.106 A third
hypothesis proposes that misfolded opsin destabilises outer
segment discs, leading to excessive shedding in response to
light, which may contribute to photoreceptor stress and
eventual death.107 Full recovery of rod sensitivity would
depend on the slow process of new disc formation, which
could explain the greatly prolonged late phase of dark
adaptation observed in patients with class B1 RP.88 Massive
shedding of outer segment tips was observed after retinal
photography in T4R dogs, consistent with this hypothesis.29

Whatever the mechanism by which light accelerates
degeneration may be, these studies point to two general
conclusions. Firstly, until more is known about the effects of
light on RP patients with specific mutations, it would be
prudent to minimise light exposure during office examina-
tions, fundus photography, and ocular surgery for patients

with the class B1 phenotype.29 The use of hats and sunglasses
during regular exposure to bright sunlight may also be
advisable. Secondly, this would be a logical population in
which to conduct further trials of light restriction.29

OGUCHI DISEASE AND RETINAL DEGENERATION:
IMPAIRED RHODOPSIN DEACTIVATION
Following excitation by light, rhodopsin must be rapidly
deactivated to restore the rod’s full sensitivity. Two proteins
are crucial for this process. Rhodopsin kinase (RK) phos-
phorylates photoactivated rhodopsin at serine and threonine
residues near the carboxyl terminus.108 109 Arrestin binds to
phosphorylated rhodopsin and prevents further activation of
transducin.110

Mutations in either RK or arrestin cause Oguchi disease, an
autosomal recessive disorder characterised by prolonged
insensitivity of rod vision following light exposure.11 44 111 112

In the absence of the normal quenching pathway, photo-
excited rhodopsin continues to activate transducin until
deactivated by a much slower process, possibly regeneration
with 11-cis-retinal. This persistent activity desensitises the
rod, markedly slowing dark adaptation.44 113 114 The fundus
displays a golden discoloration that disappears with dark
adaptation, called the Mizuo-Nakamura phenomenon.
Although Oguchi disease is usually described as a form of
stationary night blindness, patients with the most common
arrestin mutation (1147delA) may also have degenerative
features characteristic of RP.12 114–117 Phenotypically distinct
Oguchi disease and RP may be found in different members of
the same family with this mutation,117 or a single patient may
have features of both diseases.12 115 116 The same mutation has
been identified in patients with autosomal recessive RP who
had no relatives diagnosed with Oguchi disease.12 A different
arrestin mutation (Arg193ter) has similarly been identified in
two siblings with Oguchi disease, one of whom had signs of
degeneration while the other did not.118 Therefore, each of
these arrestin mutations can produce a spectrum of disease,
presumably under the influence of modifying environmental
or genetic factors. It remains to be determined whether RK
mutations can cause retinal degeneration.119

Rods from knockout mice lacking either RK or arrestin
exhibit prolonged photoresponses, consistent with the
pathophysiology of Oguchi disease.8 43 Photoresponses in RK
knockout rods also have greater than normal amplitudes.43

Both strains of knockout mice undergo light dependent
photoreceptor degeneration. Under dim cyclic lighting, the
only histological abnormality reported in the RK mutant is
shortening of rod outer segments. Exposure to brighter light
for 24 hours, which does not damage the wild type retina,
causes degeneration in RK mutants.43 Similarly, arrestin
knockout mice exhibit gradual degeneration in cyclic light,
which is greatly accelerated by a constant light regimen that
causes no damage in wild type mice.9 Mice of both genotypes
have normal retinal morphology when dark reared.9 43 The
prolonged photoresponses of RK and arrestin knockout mice,
and the strongly light dependent nature of their degenera-
tion, suggest that excessive activation of the phototransduc-
tion cascade causes photoreceptor death in these
mutants.9 43 120 This conclusion is supported by analysis of
double knockout mice lacking RK and transducin, or arrestin
and transducin. The transducin mutation largely prevents the
degeneration induced by light in the RK and arrestin single
knockouts.10

The animal results suggest that light exposure could be an
important modifier of the Oguchi disease phenotype, at least
in patients with arrestin mutations. Phototransduction
activity is excessive in all patients, but may remain tolerable
to photoreceptors in those with moderate light exposure.
Those exposed to brighter light over time may be at risk of
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degeneration. There is as yet no direct evidence for this
hypothesis in patients, but it is consistent with a body of
evidence suggesting that constitutive phototransduction can
cause either night blindness or retinal degeneration, possibly
depending on the degree of transducin activation.121 122 For
example, three rhodopsin mutations (Gly90Asp, Thr94Ile,
and Ala292Glu) cause autosomal dominant congenital night
blindness with no reported evidence of degeneration,123 124 or
with degeneration occurring only later in life.125 Biochemical
experiments,123 126–128 transgenic animal models,121 129 and
studies of patients125 have shown that the mutant opsins
activate transducin at low levels even in darkness and
desensitise rods, as though they were exposed to a weak
background light. In contrast, studies of knockout mice
lacking RPE65 suggest that higher levels of constitutive
phototransduction can cause degeneration. Loss of RPE65
function disrupts production of 11-cis-retinal.48 130 131

Therefore, opsin lacks the chromophore and is thought to
activate transducin aberrantly, causing rods to behave as if
strongly light adapted49 132–34 (although this has been dis-
puted).135 136 Photoreceptor degeneration in this model is
rescued by a transducin null mutation, implicating constitu-
tive phototransduction as its cause.134 Human RPE65 muta-
tions cause severe, early onset retinal dystrophy phenotypes
including Leber congenital amaurosis.51 Light exposure
presumably affects the level of abnormal phototransduction
in patients with arrestin mutations, and might determine
whether their disease manifests as night blindness or
degeneration.

Of course, other environmental or genetic factors5 50 106 137

might also modulate phototransduction activity, or the
vulnerability of photoreceptors, in these patients. However,
a report of a patient with Oguchi disease and degeneration
preferentially involving the inferior retina,116 similar to the
class B1 phenotype of ADRP, hints at a possible role for light.
As discussed earlier, this regional predilection could result
from increased light exposure in the superior visual field.

STARGARDT DISEASE: TOXIC BYPRODUCTS OF
VISION
Stargardt disease (STGD) is a hereditary macular dystrophy
whose features often include progressive loss of central vision
with onset during the first or second decade of life, macular
atrophy, fundus flecks, and a dark choroid on fluorescein
angiography.138 139 Histopathological changes are most pro-
nounced in and near the macula. These include RPE
degeneration and massive accumulation in RPE cells of
lipofuscin, believed to consist mainly of non-degradable
material derived from ingested photoreceptor outer seg-
ments.140–142 These findings, together with detailed analysis of
fundus and psychophysical abnormalities in patients,143 have
supported the hypothesis that degeneration of photoreceptors
in STGD is secondary to RPE dysfunction and loss. The
disease shows autosomal recessive inheritance and is caused
by mutations in ABCA4 (also known as ABCR).144 This gene
encodes rim protein (RmP),145 a transporter localised to the
rims of photoreceptor outer segment discs.146–148 ABCA4
mutations have also been identified in fundus flavimaculatus
(a variant of STGD),149 autosomal recessive RP,150 151 and
cone-rod dystrophy.151 A proposed link to age related macular
degeneration152 153 is less certain.154–156 The clinical phenotype
may depend on the degree of residual RmP activity.157

Insights into the pathogenesis of STGD and its relation to
light have come from analysis of knockout mice lacking a
functional Abcr gene, which exhibit abnormalities of the
visual cycle.45 During recovery from a photoresponse,
activated rhodopsin decays to release all-trans-retinal inside
the outer segment disc. All-trans-retinal reacts with a
phospholipid component of the disc membrane to form

N-retinylidene-phosphatidylethanolamine (N-ret-PE). RmP
translocates N-ret-PE from the intradiscal to the outer
(cytoplasmic) leaflet of the disc membrane, allowing all-
trans-retinal to be released, reduced, transported to the RPE,
and converted back to 11-cis-retinal.45 158 In the absence of
functional RmP, N-ret-PE remains trapped inside the disc,
forming further intermediates. When the disc is phagocy-
tosed by the RPE, a final set of reactions converts these to N-
retinylidene-N-retinylethanolamine (A2E),46 a component of
lipofuscin with several potentially toxic effects on RPE
cells.159–165 A2E is dramatically elevated in the RPE in both
Abcr knockout mice45 and STGD patients.46 The greater
lipofuscin accumulation and RPE degeneration in the macula
in STGD may be a consequence of the macula’s high ratio of
photoreceptors to RPE cells.45

In this model, A2E is a toxic byproduct of the visual cycle
that accumulates to abnormal levels in the RPE of Abcr
mutant mice and STGD patients as a consequence of
rhodopsin activation and retention of N-ret-PE within outer
segment discs. Therefore, A2E formation should be sup-
pressed by preventing rhodopsin activation. Dark rearing the
knockout mice prevents accumulation of A2E, suggesting
that light deprivation might slow the progression of STGD
and other dystrophies caused by ABCA4 mutations.46

Further studies have suggested an alternative strategy for
limiting A2E formation. These began with the observation
that some patients taking isotretinoin, a retinoid prescribed
for the treatment of severe acne, experience disturbances of
night vision.166 Isotretinoin inhibits the production of 11-cis-
retinal, interfering with rhodopsin regeneration.167 168 Chronic
isotretinoin treatment suppresses A2E formation and lipo-
fuscin accumulation in the RPE of Abcr mutant mice,
presumably by reducing the availability of all-trans-retinal
to form N-ret-PE in photoreceptor outer segments.169 It
remains to be determined whether this or alternative
pharmacological approaches170–172 can safely and effectively
treat patients with STGD or other diseases associated with
lipofuscin accumulation.

CONCLUSIONS
Our understanding of the role of light in retinal degeneration
continues to evolve through the use of clinical, animal, and in
vitro approaches. A growing body of evidence strongly
suggests that light exposure can modify the course of at
least some retinal dystrophies. This applies particularly to
autosomal dominant RP with the class B1 (regional)
phenotype, for which marked acceleration by fundus photo-
graphy has been demonstrated in a large animal model.29

However, carefully designed trials in patients of known
genotype are required to confirm hypotheses generated by
studies of animal models. Until such results become
available, and in the many cases for which the underlying
mutations remain unknown, it may be prudent to avoid
unnecessary exposure to bright light, especially in clinical
settings.
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