Impact of cataract surgery on health-related quality of life in nursing home residents

Cynthia Owsley, Gerald McGwin Jr, Kay Scilley, G Christine Meek, Deidre Seker, Allison Dyer

Aim: To assess the impact of cataract surgery in nursing home residents on health-related quality of life, as compared to those who have cataracts but who do not undergo surgery.

Methods: A prospective cohort study enrolled 30 nursing home residents (≥60 years old) who had cataracts and underwent cataract surgery, and evaluated vision-targeted and generic health-related quality of life and depressive symptoms before and approximately 4 months after surgery. This cataract surgery group was compared to 15 nursing home residents who had cataracts but who did not have surgery, over the same timeframe.

Results: Visual acuity for near and distance and contrast sensitivity improved following cataract surgery (p<0.001). Adjusting for age differences in the two groups, the cataract surgery group exhibited significant score improvement in the general vision (p = 0.005), reading (p = 0.001), psychological distress (p = 0.015), and social interaction (p = 0.033) subscales of the Nursing Home Vision-targeted Health-Related Quality of Life Questionnaire and the VF-14 (p = 0.004). There were no group differences in the SF-36, Geriatric Depression Scale or the Cataract Symptom Score.

Conclusion: Nursing home residents who underwent cataract surgery because of functional problems experienced significant improvements in their vision-targeted health-related quality of life, in addition to dramatically improved vision.
declined cataract surgery and consented to participate were assigned to the no-surgery group. All potential enrollees had health insurance that would cover the cost of cataract surgery and a new spectacle correction following surgery, should they elect surgery. Recruitment for the study proceeded over a two-year period and was part of a larger study on the visual status of nursing home residents.72

The study protocol consisted of a baseline and a follow-up assessment, which were identical. For the surgery group, the baseline assessment was administered before cataract surgery on either eye, and the follow-up assessment was approximately 4 months following surgery after the resident had been using his/her new spectacles for 2–3 months (new spectacles are not typically prescribed until 4–6 weeks following cataract surgery). If both eyes were undergoing surgery, the follow-up assessment was not performed until both eyes underwent surgery. For the no-surgery group, the baseline and follow-up assessments occurred at times that were commensurate with the pre-post duration for the typical surgery enrollee, except of course no cataract surgery had occurred in the intervening period.

Baseline and follow-up assessments were as follows. A research staff member assessed distance and near visual acuity while the resident used habitual correction (or nothing if they used no correction) for each eye separately and together. Testing was carried out either in the resident’s room or another private area with adequate lighting. Distance acuity was assessed with the ETDRS chart using its standard protocol and expressed as logMAR.24 Near acuity was assessed using the Lighthouse Near Visual Acuity Test (modified ETDRS) administered at 40 cm. Contrast sensitivity was evaluated using the Pelli-Robson chart25 and its standard protocol and scored by the letter-by-letter method.26 The Nursing Home Vision-Targeted Health-Related Quality of Life Questionnaire (NHVQoL)27 28 was used to assess vision-targeted health-related quality of life. The NHVQoL is an instrument specifically developed for those residing in nursing homes. The Cataract Symptom Score30 was obtained by asking residents to what extent they were bothered by five visual symptoms caused by cataract: distorted vision, glare, blurry vision, colours looking different and worsening of vision in the past month. The total score ranging from 0 (not bothered by any symptoms) to 15 (very bothered by all five symptoms) estimates the extent of visual symptomatology. The medical record was abstracted to obtain general vision, reading, ocular symptoms, mobility, psychological stress, activities of daily living, activity/hobbies, adaptation/coping, and social interaction. Two other questionnaires were also administered: the Medical Outcomes Study Short-Form 36 (SF-36)29 to assess generic health-related quality of life (both mental and physical components) and the VF-14 to assess the visual activities of daily living.30 Scoring on all three questionnaires is from 0 (severe disability) to 100 (no disability), and all questionnaires were interviewer-administered by trained personnel. The presence of depressive symptoms was assessed by the 15-item Geriatric Depression Scale (GDS),31 32 a widely used screening instrument for estimating depressive symptomatology in older adults including those residing in nursing homes. The Cataract Symptom Score29 was obtained by asking residents to what extent they were bothered by five visual symptoms caused by cataract: distorted vision, glare, blurry vision, colours looking different and worsening of vision in the past month. The total score ranging from 0 (not bothered by any symptoms) to 15 (very bothered by all five symptoms) estimates the extent of visual symptomatology. The medical record was abstracted to obtain information on demographic variables (age, gender, race/ethnicity and education, which were also verified by interview), length of stay in the nursing home, current chronic medical conditions, type of cataract, and characteristics of the surgical procedure if performed.

Statistical t and X² tests were used to compare demographic, medical and vision characteristics between the cataract surgery and no-surgery groups. To compare pre-surgery and post-surgery vision among the eyes that underwent surgery a mixed model, which accounted for the correlation of eyes within a single patient, was used. Paired t tests were used to compare baseline and follow-up vision, health-related quality of life, depression and cataract symptoms within the surgery and no-surgery groups, whereas analysis of covariance (ANCOVA) was used to compare changes in these characteristics between groups. The dependent variable for these ANCOVA analyses was the follow-up measurement and the primary dependent variable was surgery versus no surgery; the associated baseline variable was surgery versus no surgery; the associated baseline measurement for the dependent variable was also included as a covariate for the associated baseline measurement. Paired t tests were considered statistically significant.

RESULTS

Table 1 displays baseline demographic, medical and vision characteristics for the cataract surgery group (n = 30) and the
no-surgery group (n = 15). The cataract surgery group was younger on average than was the no-surgery group. The groups were not different with respect to gender, race/ethnicity, education, mental status, number of medical comorbidities, type of cataract, cataract symptom score or length of stay in the nursing home. Baseline visual function (distance and near acuity, contrast sensitivity) was also similarly distributed in the two groups, whether analysed by the better eye, worse eye, or by vision using both eyes.

All cataract surgery was performed on an outpatient basis. Of the 30 residents who had cataract surgery, nine were younger on average than was the no-surgery group. The cataract surgery group was younger on average than was the no-surgery group. The groups were not different with respect to gender, race/ethnicity, education, mental status, number of medical comorbidities, type of cataract, cataract symptom score or length of stay in the nursing home. Baseline visual function (distance and near acuity, contrast sensitivity) was also similarly distributed in the two groups, whether analysed by the better eye, worse eye, or by vision using both eyes.

Table 3 Binocular visual acuity for the surgery and the no-surgery groups at baseline and follow-up

<table>
<thead>
<tr>
<th></th>
<th>Baseline mean (SD)</th>
<th>Follow-up mean (SD)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery group (n = 30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binocular distance acuity, logMAR</td>
<td>0.55 (0.27)</td>
<td>0.23 (0.24)</td>
<td><0.001</td>
</tr>
<tr>
<td>Binocular near acuity, logMAR</td>
<td>0.72 (0.30)</td>
<td>0.38 (0.21)</td>
<td><0.001</td>
</tr>
<tr>
<td>Binocular contrast sensitivity, log</td>
<td>1.03 (0.43)</td>
<td>1.37 (0.42)</td>
<td><0.001</td>
</tr>
<tr>
<td>No-surgery group (n = 15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binocular distance acuity, logMAR</td>
<td>0.52 (0.23)</td>
<td>0.59 (0.29)</td>
<td>0.170</td>
</tr>
<tr>
<td>Binocular near acuity, logMAR</td>
<td>0.62 (0.19)</td>
<td>0.68 (0.27)</td>
<td>0.368</td>
</tr>
<tr>
<td>Binocular contrast sensitivity, log</td>
<td>1.07 (0.29)</td>
<td>0.87 (0.47)</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Table 4 Outcome: Health-related quality of life, depression, and cataract symptom list scores

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cataract surgery group (n = 30)</th>
<th>No-surgery group (n = 15)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline mean (SD)</td>
<td>Follow-up mean (SD)</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>NHVQoL, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General vision</td>
<td>57.2 (23.3)</td>
<td>79.3 (15.8)</td>
<td><0.001</td>
<td>65.7 (22.9)</td>
<td>67.7 (21.1)</td>
</tr>
<tr>
<td>Reading</td>
<td>69.4 (27.5)</td>
<td>93.6 (12.1)</td>
<td><0.001</td>
<td>78.3 (26.3)</td>
<td>78.3 (22.2)</td>
</tr>
<tr>
<td>Ocular symptoms</td>
<td>70.3 (29.8)</td>
<td>86.3 (20.3)</td>
<td><0.001</td>
<td>69.8 (32.1)</td>
<td>81.0 (27.2)</td>
</tr>
<tr>
<td>Mobility</td>
<td>82.9 (18.2)</td>
<td>93.5 (5.6)</td>
<td>0.008</td>
<td>90.2 (12.2)</td>
<td>91.9 (9.8)</td>
</tr>
<tr>
<td>Psychological distress</td>
<td>62.0 (27.0)</td>
<td>77.7 (15.1)</td>
<td>0.001</td>
<td>72.0 (17.3)</td>
<td>68.4 (24.3)</td>
</tr>
<tr>
<td>Activities of daily living</td>
<td>92.5 (15.8)</td>
<td>97.1 (9.3)</td>
<td>0.128</td>
<td>95.0 (19.4)</td>
<td>94.2 (19.4)</td>
</tr>
<tr>
<td>Activities and hobbies</td>
<td>85.2 (20.6)</td>
<td>95.9 (11.9)</td>
<td>0.001</td>
<td>95.4 (7.4)</td>
<td>88.2 (24.4)</td>
</tr>
<tr>
<td>Adaptation and coping</td>
<td>83.8 (26.9)</td>
<td>93.3 (14.6)</td>
<td>0.026</td>
<td>86.7 (18.6)</td>
<td>85.8 (30.2)</td>
</tr>
<tr>
<td>Social interaction</td>
<td>86.4 (20.1)</td>
<td>98.1 (5.8)</td>
<td>0.004</td>
<td>94.2 (9.5)</td>
<td>91.2 (17.4)</td>
</tr>
<tr>
<td>VF-14, mean (SD)</td>
<td>68.7 (23.5)</td>
<td>93.6 (14.2)</td>
<td><0.001</td>
<td>80.5 (24.3)</td>
<td>82.0 (23.2)</td>
</tr>
<tr>
<td>SF-36, mean (SD)</td>
<td>81.2 (16.1)</td>
<td>85.3 (13.5)</td>
<td>0.224</td>
<td>82.1 (11.1)</td>
<td>86.5 (7.0)</td>
</tr>
<tr>
<td>Mental component summary</td>
<td>45.9 (14.4)</td>
<td>44.0 (14.2)</td>
<td>0.523</td>
<td>45.9 (15.8)</td>
<td>45.6 (14.3)</td>
</tr>
<tr>
<td>Physical component summary</td>
<td>4.4 (2.6)</td>
<td>3.9 (2.9)</td>
<td>0.003</td>
<td>4.1 (3.5)</td>
<td>3.4 (2.7)</td>
</tr>
<tr>
<td>Cataract symptom score, mean (SD)</td>
<td>3.1 (3.6)</td>
<td>1.1 (2.6)</td>
<td>0.002</td>
<td>2.3 (4.1)</td>
<td>1.7 (2.6)</td>
</tr>
</tbody>
</table>

*Comparison of between-group changes from baseline to follow-up. †Comparison of between-group changes from baseline to follow-up, adjusted for age.
DISCUSSION
Nursing home residents who underwent cataract surgery because of functional problems experienced short-term significant improvements in their vision-targeted health-related quality of life, in addition to improvements in their vision. In contrast, nursing home residents who had cataracts but who did not undergo surgery did not exhibit these improvements. Following cataract surgery residents reported improved general vision, fewer limitations because of their vision, less difficulty with reading, less worry, frustration and/or upset over their vision, and greater ease and likelihood of engaging in social interactions. These quality-of-life benefits are not surprising given the dramatic improvement in visual acuity and contrast sensitivity that ensued following surgery. For example, distance acuity was seriously impaired, averaging 20/100 prior to surgery and after surgery was 20/35 on average.

It is important to emphasise that the characteristics of the surgical care process for these nursing home residents were highly similar to those of people residing in the community who undergo cataract surgery. Surgery was performed on an outpatient basis, primarily involved the use of posterior chamber intraocular lenses, had a very low complication rate, was covered by health insurance and had excellent visual outcomes. Although the sample size of surgical cases was small in this study (n = 30), our results are consistent with the notion that the surgical practices that ophthalmologists use when caring for community-dwelling older adults with cataracts may be extended with success into the nursing home population.

The results of this study contribute to the growing body of evidence that older nursing home residents can benefit from eye care interventions to improve visual function. We have previously shown that refractive error correction (ie, spectacles to correct near-sightedness, far-sightedness, presbyopia) enhances vision-targeted health-related quality of life, reduces difficulty in the visual activities of daily living and decreases depressive symptomatology in nursing home residents. Teresi and colleagues demonstrated that refractive error correction in nursing home residents slowed functional decline (ability to independently perform activities of daily living, range of motion, walking ability) over a 6–8-month period; when refractive error correction was combined with a nursing assistant training programme to recognise vision impairment and reinforce the use of spectacles in residents, there was an increase in function.

Unlike our previous finding that refractive error correction decreased depression symptomatology in nursing home residents, we found no analogous impact for cataract surgery. While depressive symptoms within the cataract surgery group decreased following surgery, this decrease was not different from that observed in the no-surgery group, although the small sample size in this study may have engendered inadequate statistical power for evaluating this outcome. The lack of association between cataract surgery and depression finding in this nursing home resident sample is consistent with our previous work on community-dwelling older adults showing that depressive symptoms do not decrease following cataract surgery when compared with a group of older adults with cataracts who do not undergo surgery.

Even though our vision-targeted health-related quality of life instrument revealed improvement, the physical and mental component scores of the SF-36 did not improve following cataract surgery, suggesting that a generic measure of health-related quality of life may not be sensitive enough to the condition-specific or function-specific gains that ensue after cataract surgery, a possibility noted in the literature previously.

A strength of this study is the inclusion of a comparison group of nursing home residents with cataracts who did not undergo surgery and were followed over the same time period. In addition, primary outcome measures selected for the study were valid and reliable tools for assessment of their respective constructs. Limitations must also be acknowledged. Since cataract surgery followed by intraocular lens implantation is a standard of care for the treatment of cataract, a randomised design where residents are assigned to surgery or no-surgery was not ethically possible. Thus, any observed differences in the outcomes measures of interest may be due to differences in demographic, medical or other characteristics between the surgery and no-surgery groups. To evaluate this, we compared the surgery and no-surgery groups at baseline with respect to a number of potentially confounding factors (see Table 1). The only variable that differed between the two groups was age, which was adjusted for in comparison of outcomes between the two groups. The sample size was small, although in spite of this, positive findings were obtained on some outcomes of interest. This study was not designed to examine the long-term efficacy of cataract surgery. In addition, it cannot address the efficacy of cataract surgery for nursing home residents with MMSE scores below 13. This is an issue worthy of further investigation since severe cognitive impairment is not uncommon in the nursing home population.

With mounting evidence that eye care interventions in the nursing home, such as cataract surgery and refractive error correction, improve health-related quality of life, there is a sound rationale to identify the causes of under-provision of eye care services to nursing home residents, and then once identified, to develop strategies to overcome these barriers to care. At least half of nursing home residents in the USA live at least one or more years in the nursing home and 21% reside there for almost 5 years. These are lengthy time periods for a population to be without even the most basic of eye care services given their high risk for vision impairment.

Authors’ affiliations
Cynthia Owsley, Gerald McGwin Jr, Kay Scilley, G Christine Meek, Deidre Seker, Allison Dyer, Department of Ophthalmology, University of Alabama at Birmingham
Gerald McGwin Jr, Department of Epidemiology and International Health, University of Alabama at Birmingham
Gerald McGwin Jr, Department of Surgery, University of Alabama at Birmingham

Funding: This research was supported by the Retirement Research Foundation; the EyeSight Foundation of Alabama; the Pearle Vision Foundation; National Institutes of Health grant R21-EY14071; and Research to Prevent Blindness, Inc. CO is a Research to Prevent Blindness Senior Scientific Investigator.

Competing interests: None declared.

REFERENCES
Impact of cataract surgery on health-related quality of life in nursing home residents

Let us assist you in teaching the next generation

Figures from all articles on our website can be downloaded as a PowerPoint slide. This feature is ideal for teaching and saves you valuable time. Just click on the image you need and choose the “PowerPoint Slide for Teaching” option. Save the slide to your hard drive and it is ready to go. This innovative function is an important aid to any clinician, and is completely free to subscribers. (Usual copyright conditions apply.)
Impact of cataract surgery on health-related quality of life in nursing home residents

Cynthia Owsley, Gerald McGwin, Jr, Kay Scilley, G Christine Meek, Deidre Seker and Allison Dyer

doi: 10.1136/bjo.2007.118547

Updated information and services can be found at:
http://bjo.bmj.com/content/91/10/1359

These include:

References

This article cites 30 articles, 1 of which you can access for free at:
http://bjo.bmj.com/content/91/10/1359#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Lens and zonules (807)
- Epidemiology (1068)
- Public health (476)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/