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ABSTRACT
Aim: To analyse how age-related losses in crystalline lens
transmittance and pupillary area affect circadian photo-
reception and compare the circadian performance of
phakic and pseudophakic individuals of the same age.
Methods: The spectral sensitivity of circadian photo-
reception peaks in the blue part of the spectrum at
approximately 460 nm. Photosensitive retinal ganglion
cells send unconscious information about environmental
illumination to non-visual brain centres including the
human body’s master biological clock in the suprachias-
matic nuclei. This information permits human physiology
to be optimised and aligned with geophysical day–night
cycles using neural and hormonal messengers including
melatonin. Age-related transmittance spectra of crystal-
line lenses and photopic pupil diameter are used with the
spectral sensitivity of melatonin suppression and the
transmittance spectra of intraocular lenses (IOLs) to
analyse how ageing and IOL chromophores affect
circadian photoreception.
Results: Ageing increases crystalline lens light absorption
and decreases pupil area resulting in progressive loss of
circadian photoreception. A 10-year-old child has circa-
dian photoreception 10-fold greater than a 95-year-old
phakic adult. A 45-year-old adult retains only half the
circadian photoreception of early youth. Pseudophakia
improves circadian photoreception at all ages, particularly
with UV-only blocking IOLs which transmit blue wave-
lengths optimal for non-visual photoreception.
Conclusions: Non-visual retinal ganglion photoreceptor
responses to bright, properly timed light exposures help
assure effective circadian photoentrainment and optimal
diurnal physiological processes. Circadian photoreception
can persist in visually blind individuals if retinal ganglion
cell photoreceptors and their suprachiasmatic connections
are intact. Retinal illumination decreases with ageing due
to pupillary miosis and reduced crystalline lens light
transmission especially of short wavelengths. Inadequate
environmental light and/or ganglion photoreception can
cause circadian disruption, increasing the risk of insomnia,
depression, numerous systemic disorders and possibly
early mortality. Artificial lighting is dimmer and less blue-
weighted than natural daylight, contributing to age-related
losses in unconscious circadian photoreception. Optimal
intraocular lens design should consider the spectral
requirements of both conscious and unconscious retinal
photoreception.

Fewer than 1% of retinal ganglion cells are
photoreceptive,1 but these photoreceptors play a
vital role in human physiology and health.
Photosensitive retinal ganglion cells (pRGC) were
discovered in 2002.2 They express the blue-light
sensitive photopigment melanopsin3 in their cell
bodies and elongated dendrites.4 Human retinas are

spanned by a light sensitive network of roughly
3000 widely dispersed pRGCs.1 4 Spectral absorp-
tion by melanopsin2 and sensitivity of human
nocturnal melatonin suppression5 6 both peak in
the blue portion of the spectrum at 480 and
460 nm, respectively. As shown in fig 1, this short-
wavelength sensitivity differs significantly from
longer-wavelength peak sensitivities for rod-
mediated scotopic (506 nm, green) and cone-
mediated photopic (555 nm, green–yellow)
vision.5 7 8

Suprachiasmatic nuclei (SCN) of the anterior
hypothalamus serve as the body’s master biological
clock.9 Ganglion photoreceptors send unconscious,
non-visual photic information through the retino-
hypothalamic tract to the SCN permitting align-
ment of internal biological with external
environmental time. They differ in many ways
from the rods and cones that subserve conscious
image-based vision.4 Ganglion photoreceptors
require much more light to respond than cones
and have thresholds well above those for photopic
vision.2 9–11 They lack spatial resolution and can
adapt to ambient lighting over days12 and
months.13 These properties are well suited to non-
directional detection of gross environmental illu-
mination essential for integrated circadian, neu-
roendocrine and neurobehavioural effects.4 Absent
or deficient pRGC photoreception cannot be
perceived subjectively,14 but ensuing circadian
disturbances can have significant physiological
and psychological consequences.15 16

The SCN initiate events timed to allow prepara-
tion for impending metabolic, biochemical and
physical activities.15 Prior to awakening, they
activate a morning cortisol surge and trigger
changes vital to transitioning from sleep to
wakefulness.14 Morning exposure to sunlight
increases core body temperature,17 alerting,18 cogni-
tion19 and brain serotonin levels20 which enhance
mood and vitality. As the day progresses, peak
cognition occurs commensurate with maximal core
body temperature. By evening, SCN actively
inhibit cortisol secretion for recovery from the
morning surge15 and initiate pineal secretion of the
hormone melatonin which reduces alertness and
decreases core body temperature.14 As sleep ensues,
its slow wave stages and SCN suppression reduce
cortisol to a healthy daily nadir as SCN orchestrate
a nightly surge of melatonin and other sleep-
related hormones.15 16 21

Molecular mechanisms controlling self-sustain-
ing SCN clock oscillations have been studied
extensively.22 Similar mechanisms generating daily
rhythms are present in most cells.23 Peripheral cell
oscillations quickly desynchronise with each other,
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however, unless constant temporal alignment is provided by the
SCN’s neural and hormonal timing signals.22 23 Proper SCN
functioning is critical for good health due to the numerous
functions it coordinates.15 16 18 21 23 24 Without robust SCN
signals, circadian rhythms of peripheral organs and cells can
decouple, producing biochemical disarray and flattened rhythm
amplitudes, and increasing risk of disease.15 25–27

Melatonin produced by the pineal gland is the hormone most
closely associated with SCN function.28 29 SCN neurons
suppress or stimulate melatonin synthesis at appropriate times
using a multisynaptic sympathetic pathway.28 30 Upregulation
of the rate-limiting enzyme in melatonin synthesis (N-
acetyltransferase) is directly and immediately suppressed by
the SCN in response to light.10 28 31 Darkness therefore permits
pineal melatonin production during the proper phase of the
SCN cycle. Melatonin signals time of day and simultaneously
provides potent antioxidant and numerous other beneficial
effects.28 Experimental nocturnal suppression of melatonin
synthesis by light is the widely used surrogate for photic effects
on SCN function.32

The effectiveness of light exposure for pRGC-mediated
biological effects depends on its intensity,33 duration,34 spec-
trum5 6 and timing relative to the phase of the circadian
rhythm.35 Internal biological clocks are entrained to external
environmental time by timing cues known as zeitgebers.28 Daily
environmental light is by far the most important zeitgeber in
humans,4 9 10 36 photoentraining the SCN to light–dark cycles.
Suprathreshold early morning light advances, while evening
light delays rhythms.35

Sunlight has been the primary stimulus for pRGC photo-
reception throughout human history. Skylight has a dominant
wavelength of 477 nm,37 similar to peak pRGC sensitivity.
Daylight illuminance can exceed 100 000 lux, as shown in fig 2.
Contemporary artificial sources rarely provide more than 1% of

the brightness of outdoor natural light,38 with spectra shifted to
longer (redder) wavelengths that are less effective for pRGC
photoreception.39

Brighter, longer, bluer light exposures are most efficient for
retinal ganglion mediated effects including melatonin suppres-
sion,5 6 photoentrainment,40 thermoregulation,17 improved noc-
turnal sleep quality,41–43 heart-rate variability,17 treatment of
non-seasonal44 or seasonal depression,45 enhanced mood/well-
being,46 47 alertness,17 18 46 48 cognition,19 46 49 reaction time, per-
formance and vigilance.18 48 The crystalline lens transmits
progressively less visible light and particularly less blue light as
it ages.50 51 Senescent miosis also progressively reduces retinal
illumination.52 53 Deficient circadian photoreception results in
significant neurobiological morbidity. We therefore examined
how ageing and cataract surgery potentially affect the light
available for circadian photoreception.

METHODS
Figure 2 is a compilation of published environmental and
therapeutic light levels.39 44 54–57 Typical indoor and outdoor
illuminances were confirmed with standard light meters

Figure 1 Spectral sensitivity of photopic, scotopic and circadian
(melatonin suppression) photoreception.5 7 Peak sensitivities of
circadian, scotopic and photopic photoreception are 460 nm (blue),
506 nm (green) and 555 nm (green-yellow), respectively. Spectral
absorptance is shown for 30D blue blocking (AcrySof SN60AT, Alcon
Laboratories, Fort Worth, TX) and UV-only blocking (ClariFlex, Advanced
Medical Optics, Santa Ana, CA) intraocular lenses (IOLs).8 The area
between the two IOL curves is the violet, blue and green light blocked in
comparison with a UV-only blocking IOL.

Figure 2 Light levels in contemporary and natural environments39 54–57

and also in phototherapy for seasonal affective disorder, which is
typically 2500 lux for 2 h/day or 10 000 lux for 30 min/day.44

Illuminances are given in units of photopic lux. Photopic lux accurately
describe the effectiveness of a particular light exposure for overall cone
photoreception, which has a peak sensitivity at 555 nm in the green–
yellow part of the spectrum (cf, fig 1). A standard circadian lux unit is
needed10 40 but has not been adopted yet for comparing the effectiveness
of different light exposures for circadian photoreception, which has peak
sensitivity at 460 nm in the blue part of the spectrum (cf, fig 1).
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(Models 403125 and EA30s, Extech Instruments Corporation,
Waltham, MA). The age-related decline in retinal illumination
in fig 3 was calculated by multiplying human crystalline lens
transmittance at different ages51 with photopic pupil area for
those ages.53 Results are presented relative to a 10-year-old eye.
Pupil-weighted spectral retinal illumination was multiplied
wavelength by wavelength with melatonin suppression sensi-
tivity5 58 between 350 and 700 nm to determine how ageing
affects circadian photoreception for an isoquantal light source.
Resultant areas under the curve for 10 years of age and 15
through 95 years of age represent relative circadian illumination
and are presented in table 1. Similar calculations are shown in
fig 4 but with the spectral transmittance of 20 and 30-dioptre
blue-blocking (AcrySof SN60AT, Alcon Laboratories, Fort
Worth, TX) or UV-only blocking (ClariFlex, Advanced
Medical Optics, Santa Ana) intraocular lenses8 (IOLs) used in
addition to that of crystalline lenses (cf, fig 1).

RESULTS
Figure 3 shows how losses in crystalline lens transmittance and
pupil area due to ageing produce progressive decreases in pupil-
weighted spectral retinal illumination. Percentage losses are
reasonably uniform with each passing decade. They are most
prominent at shorter violet (400–440 nm) and blue (440–
500 nm) wavelengths.

Table 1 presents relative effectiveness of circadian photo-
reception at different ages. By 45 years of age, crystalline lens
yellowing and pupillary miosis reduces circadian photoreception
to roughly half that of a 10-year-old. People in their eighth and
ninth decades retain only 10% of a 10-year-old’s circadian
photoreception, so they need 10 times more light for equivalent
circadian photoreception under similar illumination, in agree-
ment with Charman’s findings.58 Deficits will be underestimates
if pRGC populations decline with ageing as do those of non-
photoreceptive retinal ganglion cells.59 Additional reductions in
pRGC photoreception may occur if ocular light transmission is
decreased further by factors such as ethnicity, iris pigmenta-
tion,60 reduced corneal clarity, cataract or sunglass usage.

Figure 4 illustrates age-related losses or gains in circadian
photoreception relative to a 10-year-old eye. Cataract extraction
with implantation of a UV-only blocking IOL results in

significant gains, with performances in older adults comparable
with phakic individuals up to four decades younger. People
under 50 years of age with UV-only blocking IOLs attain better
circadian photoreception than in their youth. UV-only blocking
IOLs provide circadian photoreception at any given age roughly
15–20 years younger than blue-blocking IOLs, depending on the
latter’s dioptric power.

DISCUSSION
There is little current information on the susceptibility of
retinal ganglion photoreceptors to ocular disease. Retinitis
pigmentosa may affect ganglion as well as rod and cone
photoreceptors because by 50 years of age, 95% of people with
retinitis pigmentosa experience intermittent insomnia, daytime
sleepiness and reduced alertness.61 62 Glaucoma is associated
with ganglion cell losses, but pRGCs were resistant to ocular
hypertension in one experimental rodent study.63 Cortical
blindness would not affect light-mediated pRGC functions so
patients should retain normal sleep patterns with appropriate
light exposure and potentially benefit from light therapy for
coincident depression even though visually blind. Conversely,
whiplash injury,64 tetraplegia,30 autonomic neuropathy or other
conditions affecting the retinohypothalamic tract, SCN-pineal
connections or intermediate nuclei can impair or abolish specific
circadian rhythms.

SCN cycle at fixed, inherited, individually specific periods
that typically differ from 24 h and average 24.2 h in humans.9 If
environmental timing cues are inadequate or absent,36 65 SCN
cycle daily at their own intrinsic period independent of
geophysical day–night cycles. Repetitive cycling without daily
resetting is termed free-running.9 In free-running, the phase of
physiological cycles progressively deviates from and then
returns to that of environmental day–night cycles over days
or months.

Most totally blind individuals have abnormal or free-running
circadian rhythms,36 66 but some visually blind individuals retain
pRGC photoreception.67 Visually blind people without pRGC
photoentrainment suffer the additional burden of periodic
extreme circadian desynchrony with daytime drowsiness from
elevated daytime melatonin levels and night-time insomnia due
to circadian alerting.68 Their condition is equivalent to a lifetime
of recurrent profound jetlag which in itself is disabling.69 Blind
individuals with intermittent insomnia and daytime napping
despite adequate light exposure36 should be suspected of free-
running. They typically entrain with daily exogenous melato-
nin, which can improve their quality of life70 and possibly reduce
otherwise increased early mortality risks.71–76

Inadequate environmental light exposure can also cause free-
running circadian rhythms. People with normal vision in their
mid-twenties free-run at room illuminances under 200 lux77 or
even 80 lux.78 Astronauts (37–43 years of age) become free-
running at typical space shuttle illuminances below 80 lux,
producing circadian disruption, poor sleep quality and neuro-
behavioural performance decrements.65 If 80–200 lux does not
prevent free-running with its adverse consequences in 25-year-
olds, much higher illuminances would be inadequate for older
people with their declining crystalline lens transmittance and
pupil area (cf, table 1). For example, 184–460, 256–640, 400–
1000 and 536–1340 lux would be inadequate to prevent free-
running in 55, 65, 75 and 85-year-old adults, respectively.
Residential illuminances are much lower than those needed to
prevent free-running in older adults, typically averaging only
100 lux (cf, fig 2).29 38 57 This light level is very dim compared
with natural outdoor lighting.39

Figure 3 Age-related losses in retinal illumination due to decreasing
crystalline lens light transmission and pupil area. Percentage losses per
decade are reasonably uniform and most prominent at shorter violet
(400–440 nm) and blue (440–500 nm) wavelengths.
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Daily light exposures necessary for non-visual photoreception
depend on numerous intrinsic13 60 79 80 and extrinsic factors.5 33–35

For example, older women even with dilated pupils are
insensitive to blue light exposures sufficient to suppress
melatonin significantly in younger women, demonstrating that
age-related crystalline lens yellowing reduces circadian photo-
reception.81 As shown in fig 4, cataract surgery provides older
adults with more youthful circadian photoreception.

Sunlight’s importance is underscored by seasonal and
weather-related neuropsychological disorders that would not
occur if indoor lighting were sufficient for all neurobiological
needs. Midwinter insomnia affects up to 80% of certain
populations at higher latitudes.82 Over 90% of people have
some mood reduction during sporadically overcast weather or
seasonal decreases in daylight length or intensity.83–85 Seasonal
affective disorder (SAD) causes disabling depression, hypersom-
nolence and weight gain during the fall and winter in
approximately 10% of the population.86 Non-seasonal depres-
sion is also closely associated with reduced light exposure.87 88

Reduced sunlight exposure in sighted individuals can cause
insomnia, free-running rhythms, extreme flattening of hormo-
nal profiles and cognitive difficulties that are reversible with
restoration of adequate sunshine.89 90

Environmental illumination is inversely correlated with
insomnia42 91 and depression,87 88 both of which increase with

ageing.92 Chronic sleep disturbances affect 40–70% of elderly
populations.92 Indeed, only 12% of 9000 subjects aged 65 or
older denied sleep complaints.93 Chronic insomnia and depres-
sion are closely associated.93 94 Up to 30% of older populations
have depression,95 96 which, like insomnia, frequently goes
undiagnosed.97 98 Insomnia and depression are significant risk
factors for cancer,99 diabetes,100 cognitive deficiencies,93 101

dementia,102 cardiovascular disease95 and premature mortal-
ity.96 103 Flattened nocturnal melatonin amplitudes occur with
ageing in some104 but not all105 people probably because of
differences in environmental light exposure.42 Reduced circadian
amplitudes are also associated with higher risks of cancer106 and
other diseases.107 Bright light (>2500 lux) particularly from
bluer sources such as outdoor daylight can reduce or eliminate
insomnia42 and depression;44 immediately increase brain seroto-
nin,20 mood,47 alertness, and cognitive function;17 19 49 and
normalise otherwise decreased circadian hormonal amplitudes
including nocturnal melatonin levels that may have been
undetectable previously.42 89 90

Young adults in industrialised countries typically receive only
20–120 min of daily light exposure exceeding 1000 lux.42 87 108 109

Elderly adults’ bright light exposures average only 1/3 to 2/3
that duration.42 110 Institutionalised elderly receive less than
10 min per day of light exposure exceeding 1000 lux,55 111 with
median illuminances as low as 54 lux.55 The declining bright

Figure 4 Age-related losses or gains in
circadian photoreception relative to a 10-
year-old eye for phakic eyes, for 20 and
30D blue-blocking (AcrySof SN60AT,
Alcon Laboratories, Fort Worth, TX) and
for UV-only blocking intraocular lenses
(IOLs) regardless of dioptric power
(ClariFlex, Advanced Medical Optics,
Santa Ana, CA). Cataract extraction with
IOL implantation produces significant
gains over phakic eyes, particularly with
UV-only blocking IOLs that do not filter
out shorter wavelengths vital for non-
visual photoreception.

Table 1 Relative circadian photoreception vs age*

10 years 15 years 25 years 35 years 45 years 55 years 65 years 75 years 85 years 95 years

10 years 1.0 0.9 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0.1

15 years 1.1 1.0 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0.1

25 years 1.2 1.1 1.0 0.8 0.6 0.4 0.3 0.2 0.1 0.1

35 years 1.6 1.5 1.3 1.0 0.8 0.6 0.4 0.3 0.2 0.2

45 years 2.0 1.8 1.6 1.3 1.0 0.7 0.5 0.3 0.2 0.2

55 years 2.8 2.5 2.3 1.8 1.4 1.0 0.7 0.5 0.3 0.3

65 years 3.8 3.5 3.2 2.4 1.9 1.4 1.0 0.6 0.5 0.4

75 years 6.1 5.6 5.0 3.9 3.0 2.2 1.6 1.0 0.7 0.6

85 years 8.2 7.6 6.7 5.2 4.1 3.0 2.1 1.4 1.0 0.8

95 years 10.0 9.2 8.2 6.4 5.0 3.6 2.6 1.6 1.2 1.0

*Circadian photoreception declines with ageing due to pupillary miosis and decreased crystalline lens transmission. This table presents circadian performance for an age in the top
row relative to that of an age in the left column. For example, a person aged 45 has photoreception roughly half that of a 15-year-old and twice that of a 65-year-old. The table can
also be used to estimate the light requirements for an age in the left column relative to that of an age in top row. For example, a person aged 65 needs roughly three times the
illuminance of a 25-year-old and half that of a 85-year-old for equivalent circadian photoreception performance.
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light exposure of many older adults combined with their
reduced retinal illuminance due to pupillary miosis and crystal-
line lens yellowing places them at risk for retinal ganglion
photoreception deficiency, possibly contributing to age-related
insomnia, depression and cognitive decline. Cataract surgery
with a UV-only blocking IOL has been shown to decrease the
incidence of insomnia and daytime sleepiness.112 113

CONCLUSION
The eye’s critical role in good health has become increasingly
evident. Unconscious retinal ganglion photoreceptor responses
to bright, properly timed light exposures ensure optimal
circadian rhythms, photoentrainment and other neurobiological
responses. Inadequate environmental light and/or ganglion
photoreception can cause circadian disruption, increasing the
risk of insomnia, depression and numerous systemic disorders.
Complete blindness involving both conscious vision and
unconscious, non-visual photoreception should be differentiated
from visual blindness affecting only the conscious perception of
light. Visually blind patients should be encouraged to get
sufficient light, while completely blind individuals typically
benefit from melatonin therapy.

Circadian photoreception decreases with ageing caused by
age-related pupillary miosis and reduced crystalline lens
transmission, particularly of blue light. Circadian studies should
control for subjects’ pupil size and crystalline lens or IOL
transmittance. Patient lifestyle education and architectural
designs addressing the increased photic needs of older adults
are potentially beneficial, as are retinal photocoagulation
procedures localised to the outer retina that potentially spare
ganglion photoreceptors.114 115 Light deficiency, whether due to
improper timing, suboptimal spectrum or insufficient intensity,
may contribute to medical conditions commonly assumed to be
age-related inevitabilities. Unconscious and conscious photo-
reception should both be considered in IOL design and selection
in order to maximise the non-visual as well as visual benefits of
cataract surgery.8 43

Competing interests: PLT has received travel grants from Advanced Medical Optics,
Incorporated. MAM serves as a consultant for Advanced Medical Optics, Iridex and
Ocular Instruments Corporations.
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