Mutations in the quinolone resistance determining region in *Staphylococcus epidermidis* recovered from conjunctiva and their association with susceptibility to various fluoroquinolones

M Yamada, J Yoshida, S Hatou, T Yoshida, Y Minagawa

ABSTRACT

Background: *Staphylococcus epidermidis* is one of the prominent pathogens in ocular infection. The prevalence of mutations in the quinolone resistance determining region (QRDR) area in *S epidermidis* isolated from the ocular surface and its association with fluoroquinolone resistance has not been fully elucidated.

Methods: Mutations in the QRDR of gyrA, gyrB, parC, and parE genes of 138 isolates of *S epidermidis* recovered from the human conjunctival flora were analysed. The minimal inhibitory concentrations (MICs) of four fluoroquinolones (levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin) against these isolates were also determined using agar dilution methods.

Results: The MIC90 values of levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin were 3.13, 1.56, 0.78 and 3.13 μg/ml, respectively. The MIC values of all fluoroquinolones showed a bimodal distribution (susceptible strain and less susceptible strain). Mutations with amino acid substitution in the QRDR were present in 70 (50.7%) isolates. 19 different combinations of mutations were detected: 3 isolates (2.2%) had four mutations, 8 (5.8%) had three mutations, 43 (31.2%) had double mutations and 16 (11.6%) had single mutations. Isolates with mutations in the QRDR of both gyrA and parC (n = 53) were less susceptible to fluoroquinolones.

Conclusions: The present findings show that approximately half the *S epidermidis* isolates from the normal human conjunctiva have mutation(s) in the QRDR. The presence of mutations in both gyrA and parC is strongly associated with reduced susceptibility to fluoroquinolones.

Staphylococcus epidermidis is one of the most prominent causes of conjunctivitis, keratitis and endophthalmitis. Although the relative frequency of different organisms as causative agents in keratitis varies during different periods and in different geographical regions, *S epidermidis* is among the most frequently encountered organisms in clinical studies conducted in the USA, Germany and Japan. It is the most common bacterial isolate in most large studies of acute postoperative endophthalmitis.

The fluoroquinolones are the newest family of antibacterial agents used in the treatment of ocular infections. In Japan, ofloxacin was the first fluoroquinolone introduced for topical ophthalmic use in 1987. Since then, six other fluoroquinolones—norfloxacin, lomefloxacin, levofloxacin (LVFX), gatifloxacin (GFLX), tosufloxacin (TFLX) and moxifloxacin (MFLX)—have been approved for clinical use as eye drops in Japan. In addition to these compounds, ciprofloxacin has been used clinically in other countries. Their bactericidal activity against the most frequently observed Gram-positive and Gram-negative ocular pathogens is generally excellent and their high potency has made them a common choice for the treatment and prevention of ocular infections.

However, as with other antibiotic agents, continued use in a population raises the issue of emerging resistance. Since the introduction of fluoroquinolones for ophthalmic use, the reported incidence of in vitro resistance to fluoroquinolones in bacteria isolated from cases with bacterial keratitis and endophthalmitis has been steadily increasing. A previous study reviewed the database of bacterial flora cultured from the conjunctival sac of 1455 Japanese patients scheduled for intraocular surgeries between 1995 and 2002. The incidence of in vitro resistance of bacterial isolates to ofloxacin increased from 18.5% in 1995 to 32.8% in 1999. Moreover, when ofloxacin was replaced by LVFX in 2000, the incidence of resistance to LVFX gradually increased from 14.5% in 2000 to 20.5% in 2002.

The primary targets of fluoroquinolones are two essential enzymes of bacterial cells, DNA gyrase and topoisomerase IV. In *S epidermidis*, DNA gyrase is composed of the GyrA and GyrB subunits encoded by the *gyrA* and *gyrB* genes, respectively. Topoisomerase IV is composed of ParC and ParE subunits encoded by *parC* and *parE* genes, respectively. In most bacterial species, mutations occur in the highly conserved quinolone resistance-determining regions (QRDR) of the genes that encode DNA gyrase and topoisomerase IV. In *Staphylococcus aureus*, several studies have shown that a combination of mutations in both genes can cause high-level resistance even to the newer fluoroquinolones. However, the prevalence of mutations in the QRDR in *S epidermidis* isolated from the ocular surface and its association with fluoroquinolone resistance have not been fully investigated. The present study analysed mutations in the QRDR of gyrA, gyrB, parC and parE genes of 138 isolates of *S epidermidis* recovered from conjunctival flora. The susceptibility of these isolates to LVFX, GFLX, MFLX and TFLX was also determined.
METHODS

Bacterial isolates and susceptibility testing

One hundred and thirty-eight isolates of *S. epidermidis* were collected from the conjunctival sac of 138 eyes of 129 patients who were scheduled for intraocular surgery at the National Tokyo Medical Center between November 2004 and June 2005. The mean (SD) age of the patients was 70.7 (14.9) years (range 6–91 years). The patients had not received either ophthalmic or systemic antibiotics prior to bacterial sampling.

Scrapes of the inferior conjunctival fornix were taken in the absence of topical anaesthetic using a sterile cotton swab. The samples were immediately inoculated into Mueller-Hinton (MH) agar and incubated at 35°C in air for 16–20 h for the selection of staphylococci. The MicroScan WalkAway-96 (Baxter Japan, Tokyo) with MicroScan Rapid Pos Combo Panel (Baxter) was used for the identification of *S. epidermidis*. Positive cultures were stored at 2–8°C until the agar dilution testing to determine the minimum inhibitory concentration (MIC).

MICs for LVFX, GFLX, MFLX and TFLX were determined by the agar dilution method in accordance with the recommendations of the Japanese Society of Chemotherapy. The bacterial suspensions in saline were inoculated on MH agar plates supplemented with defined concentrations of drugs. The plates were incubated at 35°C under aerobic conditions and MICs were determined after 20–24 h of incubation. Drug concentrations ranged from 0.025 µg/ml to 100 µg/ml in twofold increments except for TFLX (0.025 µg/ml to 25 µg/ml) because of its limited solubility.

DNA amplification and sequencing of QRDR

The isolates were suspended in tryptic soy broth and cultured overnight. Genomic DNA was extracted using the Wizard SV 96 genomic DNA purification system (Promega KK, Japan). One µl of the genomic DNA solution was applied in 20 µl of amplification mixture (5 pM each primer, 1.6 µl dNTP mixture, 2 µl Ex Taq buffer and 0.1 µl LA Taq (Takara Bio Inc, Japan)).

Polymerase chain reaction (PCR) amplification was performed with the primers as shown in table 1. PCR primers were selected from the published sequences of *S. epidermidis* RP62A. Each reaction was amplified with the following temperature profiles: 30 cycles at 94°C for 30 s, 55°C for 30 s and 72°C for 1 min. The amplified DNA products were separated and identified by 2% agarose gel electrophoresis.

PCR products were purified using ExoSAP according to the manufacturer's instructions (GE Healthcare Bio-Sciences KK, Japan). PCR-amplified DNA was sequenced by the dye

Table 1

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Product size (bp)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>gyrA</td>
<td>ATACGTTAGATCATCTTCTAGACTATGC</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GACGCCAAGTAAAAGGATTGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gyrB</td>
<td>GACGTAGAGGTGTTCAAG</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCAATCCCGTCACAAATGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parC</td>
<td>TGGCAATGATTCTCAAGG</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATGTTATGAGAATACATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parE</td>
<td>AAAGCTCAAAGGACGCCAGAGGCTG</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAAAGTCAGTACACCAACCCGAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Mutation type</th>
<th>No of isolates</th>
<th>Mutation</th>
<th>gyrA</th>
<th>gyrB</th>
<th>parC</th>
<th>parE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe + Asp84Val + Ala85Ser</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe + Asp84Tyr</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe + Asp84Asn</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Ser84Phe</td>
<td>–</td>
<td>–</td>
<td>Asp84Tyr</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Ser84Tyr</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Ser84Tyr</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe + Asp434Asn</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Ser84Tyr + Glu88Lys</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe + Asp434Asn</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Ser84Tyr</td>
<td>–</td>
<td>–</td>
<td>Ser80Tyr</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Ser84Tyr</td>
<td>–</td>
<td>–</td>
<td>Ser80Ile</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Ser84Ile</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe</td>
<td>Asn404Ser + Asp434Asn</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Ser80Tyr</td>
<td>Asn404Ser</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Ser80Phe</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Asp69Asn</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Ser81Pro</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Asp84Gly</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Asn404Ser</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Asp434Asn</td>
</tr>
</tbody>
</table>
RESULTS

The mutations identified in the QRDR of the gyrA, gyrB, parC, and parE genes are summarised in table 2. Nineteen different combinations of mutations were identified in 70 isolates, whereas no mutations were detected in 68 isolates. Three isolates (mutation profile type 2, 9 and 12) had four amino acid substitutions, 8 isolates (mutation profile type 4, 5 and 8) had three amino acid substitutions, 43 isolates (mutation profile type 1, 3, 6, 7, 10, 11 and 13) had double amino acid substitutions, and 16 isolates (mutation profile type 2, 9 and 12) had single amino acid substitutions.

In the gyrA gene, a single-point mutation was found in 53 isolates at codon 84. Double-point mutations in the gyrA gene were identified in 1 isolate at codons 84 and 85 (mutation profile type 4). No mutations were found in the QRDR area of the gyrB gene. In the parC gene, single-point mutations were found in 51 isolates at codons 80, 81, 84 or 85. Double-point mutations were identified in 6 isolates at codons 80 and 84 (mutation profile type 4, 5 and 9). Triple-point mutations were identified in 1 isolate at codons 80, 84 and 85 (mutation profile type 2). In the parE gene, single-point mutations were found in 16 isolates at codon 404 or 454. Double-point mutations were identified in 1 isolate at codons 404 and 454.

The MICs of the four tested fluoroquinolones against S epidermidis are shown in table 3. All four fluoroquinolones had a bimodal distribution in all isolates (n = 138). Isolates with no mutations in the QRDR (wild type, n = 68) were susceptible to fluoroquinolones. The modes (the number that appears the most) were 0.2 μg/ml for LVFX, 0.1 μg/ml for GFLX, 0.05 μg/ml for MFLX, and 0.05 μg/ml for TFLX. Isolates with mutations restricted in the QRDR of parC and/or parE (n = 17) showed similar susceptibilities to fluoroquinolones as wild type strains except for one strain with mutation profile type 18. The modes were 0.2 μg/ml for LVFX, 0.1 μg/ml for GFLX, 0.05 μg/ml for MFLX, and 0.05 μg/ml for TFLX. Isolates with mutations restricted in the QRDR of both gyrA and parC (n = 53) were less susceptible to fluoroquinolones. The modes were 1.56 μg/ml for LVFX, 0.78 μg/ml for GFLX, 0.39 μg/ml for MFLX and 0.78 μg/ml for TFLX. Of these 53 isolates, 51 had amino acid substitutions at GyrA84 and ParC380. One isolate (mutation profile type 9) with two amino acid substitutions both in GyrA and ParC had the highest MICs (25 μg/ml for LVFX, 12.5 μg/ml for GFLX, MFLX and TFLX, respectively).

DISCUSSION

The primary targets of fluoroquinolones are two essential enzymes of bacterial cells, DNA gyrase and topoisomerase IV. In most bacterial species the mutations in the genes that lead to fluoroquinolone resistance are limited to a few point mutations at restricted positions of the genes called QRDR. The present study revealed that approximately half (50.7%) of S epidermidis isolates in the human conjunctival flora have mutation(s) in the QRDR area of gyrA, gyrB, parC and parE genes.

Fluoroquinolone resistance has been studied intensively in S aureus. The genes encoding topoisomerase IV in S aureus are called grlA and grlB, which are analogous to parC and parE in S epidermidis, respectively. Fluoroquinolone resistance in S aureus...
Drug resistance is a serious concern in treating ocular infections. The current study showed that approximately half the S epidermidis isolates from the conjunctival flora have mutation(s) in the QRDR. Both gyrA gene and parC gene are associated with the development of fluoroquinolone resistance.

Funding: Supported in part by a grant from the Ministry of Health, Labour and Welfare, Japan.

Competing interests: None.

Ethics approval: The principles of the World Medical Association Declaration of Helsinki were followed. Each subject received a thorough explanation of the purpose of the study and all procedures involved in the study, and provided written informed consent prior to enrolment. Approval for this investigation was granted by the Committee for the Protection of Human Subjects at National Tokyo Medical Center.

References

Mutations in the quinolone resistance determining region in *Staphylococcus epidermidis* recovered from conjunctiva and their association with susceptibility to various fluoroquinolones

M Yamada, J Yoshida, S Hatou, T Yoshida and Y Minagawa

Br J Ophthalmol 2008 92: 848-851 originally published online May 6, 2008
doi: 10.1136/bjo.2007.129858

Updated information and services can be found at:
http://bjo.bmj.com/content/92/6/848

These include:

References
This article cites 21 articles, 5 of which you can access for free at:
http://bjo.bmj.com/content/92/6/848#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- **Eye (globe)** (708)
- **Open access** (255)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/