
Cerebrospinal fluid pressure and glaucoma:
regulation of trans-lamina cribrosa pressure
Brian Marek,1 Alon Harris,1 Priyanka Kanakamedala,1 Eric Lee,1

Annahita Amireskandari,1 Lucia Carichino,2 Giovanna Guidoboni,1,2

Leslie Abrams Tobe,1 Brent Siesky1

1Department of
Ophthalmology, Eugene and
Marilyn Glick Eye Institute,
Indianapolis, Indiana, USA
2Department of Mathematical
Sciences, Indiana University–
Purdue University at
Indianapolis, Indianapolis,
Indiana, USA

Correspondence to
Professor Alon Harris,
Department of Ophthalmology,
Eugene and Marilyn Glick Eye
Institute, Indiana University
School of Medicine, 1160
W. Michigan St., Indianapolis,
IN 46202, USA;
alharris@indiana.edu

Received 20 June 2013
Revised 25 September 2013
Accepted 13 November 2013
Published Online First
4 December 2013

To cite: Marek B, Harris A,
Kanakamedala P, et al. Br J
Ophthalmol 2014;98:
721–725.

ABSTRACT
Increased trans-lamina cribrosa pressure difference
(TLCPD), the difference of intraocular pressure (IOP) and
orbital cerebrospinal fluid pressure (CSF-P), has been
investigated as a possible risk factor in glaucoma
pathogenesis. In fact, lower CSF-P in the setting of
normal IOP has been implicated as a potential risk factor
for normal tension glaucoma. Increased TLCPD has been
associated with decreased neuroretinal rim area and
increased visual field defects. Furthermore, dysregulation
of systemic blood pressure has been associated with
changes in IOP. Recent studies have also suggested that
increased body mass index (BMI) is associated with
decreased prevalence of glaucoma, which may be due to
an increased CSF-P with increased BMI found in many
studies. Given the interaction of various pressures, their
role in glaucoma pathophysiology has come under
investigation and warrants further study in order to better
understand the aetiology and progression of glaucoma.

INTRODUCTION
Glaucoma is a multifactorial disease resulting in pro-
gressive loss of retinal nerve ganglion cells, as evi-
denced by worsening visual fields and increased
cup-to-disc ratios.1 It is the second leading cause of
blindness worldwide.2 In fact, one study estimated
that over 79.6 million people would have glaucoma
worldwide by 2020, of whom 74% would develop
open angle glaucoma (OAG).3 Additionally, the
global disability adjusted life years, a measure of
overall disease burden, of glaucoma has risen from
443 000 years in 1990 to 943 000 years in 2010.4 5

Despite its prevalence, the aetiology of glaucoma
remains unclear. Various studies have documented
the existence of elevated IOP in patients with and
without glaucomatous damage, leading to division
of patients into OAG and ocular hypertensive
(OHT) groups, respectively. The existence of OHT
has increased investigation of various pressures that
may be implicated in glaucoma. This review will
discuss the interactions of various pressures that may
contribute to glaucoma: intraocular pressure (IOP),
blood pressure (BP) and cerebrospinal fluid pressure
(CSF-P). Special focus will be placed on the relation-
ship between CSF-P and IOP and how these two
forces contribute to glaucoma pathophysiology by
creating a trans-lamina cribrosa pressure difference
(TLCPD). A literature search of online databases
PubMed and Medline was conducted using key
term glaucoma along with cerebrospinal fluid pres-
sure, intracranial pressure and trans-lamina cribrosa

pressure. References from articles were also consid-
ered to ensure completeness.

IOP, CSF-P AND TLCPD
The forces of IOP and CSF-P meet at the lamina cri-
brosa, a modified extension of the peripapillary
scleral flange, composed of collagen and non-
collagen components.6 The lamina cribrosa forms a
barrier between the intraocular space and the retro-
bulbar space.7 It functions as a barrier between the
posterior force of the IOP and the anterior force of
the CSF-P within the orbit, also known as the
TLCPD (TLCPD=IOP–CSF-P). Studies have shown
that the retrolaminar tissue pressure is 4 mg Hg
when CSF-P is 0 mm Hg.8 The ability of the lamina
cribrosa to withstand the pressure gradient without
deforming is dependent on its thickness, the rigidity
of the extracellular matrix and the peripheral scleral
tension. The lamina cribrosa’s ability to maintain
shape is important in protecting the structures that
pass through it: the retinal ganglion cell axons, the
central retinal artery (CRA) and the central retinal
vein. Increased TLCPD could cause bowing of the
lamina cribrosa. Such deformity may damage optic
nerve ganglion cells via mechanical compression or
ischaemia as the vessels pass through the lamina
cribrosa.9

While the effect of position on pressures will be
discussed in detail later, it is important to note that
one study found average IOP in a healthy patient
population to be 14.3±2.6 mm Hg, while average
CSF-P in the lateral decubitus position was found
to be 12.9±1.9mm Hg.10 In a lateral decubitus
position, assuming no obstruction to CSF flow,
there will be a posterior force on the lamina cri-
brosa. TLCPD could increase further if an individ-
ual had increased IOP and/or decreased CSF-P. To
this end, studies have addressed the relationship
between CSF-P and glaucoma.
Yablonski and colleagues evaluated the TLCPD

in cats by lowering the intracranial pressure (ICP)
and by lowering IOP in only one eye.11 After
3 weeks, histological examination of the optic
nerve heads of eyes with unaltered IOP revealed
prelaminar axonal swelling, optic disc cup enlarge-
ment and posterior displacement of the lamina cri-
brosa. When IOP was lowered with ICP, thus
minimising alterations in TLCPD, no ocular
changes were found.11

LAMINA CRIBROSA STRUCTURE
Lamina cribrosa structure provides additional
insight into mechanisms of glaucomatous damage.
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The lamina cribrosa allows retinal ganglion cell axons to exit
the eye through 500–600 pores.6 These pores are of differing
diameter and depth depending on location within the disc-like
structure. The pores in the superior and inferior portions of the
lamina cribrosa are larger and contain a greater number of
nerve fibres.6 The optic nerve is nourished by capillaries within
the lamina cribrosa, which is supplied by the short posterior
ciliary arteries.12 The superior and inferior portions are also
where damage from glaucoma first occurs. Since less connective
tissue exists between these pores to provide structural and nutri-
tional support, the fibres may be more susceptible to mechanical
or vascular changes from an increased pressure gradient.6

Recently, mathematical models have been developed to model
the effect of lamina cribrosa deformation on CRA blood flow.9

It is hypothesised that posterior displacement of the lamina cri-
brosa deforms the CRA and consequently decreases blood flow.
The CRA blood flow velocities were calculated with the math-
ematical models as a function of IOP. The latter affected lamina
cribrosa displacement according to the elastic properties pro-
vided by the model. This model mirrors data previously
obtained utilizing colour Doppler imaging (CDI) measurements
of CRA peak systolic velocity as IOP was experimentally
increased with suction ophthalmodynamometry.9 With further
development of these models, a patient’s risk for glaucoma pro-
gression based on various ocular measurements and vascular
parameters can potentially be better evaluated.

Noteworthy in this discussion of TLCPD, however, is that
CSF occupies a fluid-filled compartment that changes position
within space and is subject to gravity. Therefore, the pressure
exerted by CSF varies with position of the area in question rela-
tive to the vertical position of the whole compartment.13 In a
sitting position, it was found that the CSF-containing lumbar
subarachnoid space had a pressure of 0 mmHg at the level of
the occiput of the skull, a height similar to the globe. Thus, the
pressure around the optic nerve is likely less than that measured
with lumbar puncture performed in a lateral decubitus position.
An associated issue is that IOP has also been found to vary with
posture.14 15 The IOP increases when moving from an upright
to horizontal position. Furthermore, such an IOP increase is
greater in those with glaucoma over normal controls.15 16 One
study demonstrated a 2.9 mm Hg increase from a seated to
supine position change in healthy controls and a 3.9 mm Hg
change in those with glaucoma.5 The current explanation for
IOP variation is that postural changes result in elevated episcl-
eral venous pressure and choroidal congestion.17 18 In fact, an
increase of episcleral venous pressure of 0.83±0.21 mm Hg cor-
related with an increase of 1 mm Hg in IOP. Several studies
found that vascular congestion increased in inverted positions,
placing pressure on ocular tissues and elevating IOP. Moreover,
diurnal IOP fluctuations may affect the TLCPD gradient.19

However, research suggests that aqueous production is not
affected by posture.20

Furthermore, recent investigations into CSF within the sub-
arachnoid space surrounding the optic nerve suggest that there
are variations in CSF flow surrounding the globe.21–24 The sub-
arachnoid space encircling the optic nerve can be divided into
three sections by the architecture of the trabeculae, septa and
pillars that exist within the space.21 This divisive architecture
could account for changes in CSF flow and even cause a ‘com-
partment syndrome’ in the subarachnoid space.23 This could
result in variation in CSF-P at the lamina cribrosa and thus pos-
sibly alter TLCPD gradient. Compartmentalisation or decrease
in CSF flow away from the optic nerve could also lead to accu-
mulation of toxic metabolites or decreased nutrients.

Compartmentalisation of CSF around the optic nerve is evi-
denced by high concentration of lipocalin-like prostaglandin
D-synthase (L-PGDS) found near the optic nerve head. L-PGDS
is neuroprotective of astrocytes, modulates inflammation and is
apoptotic and may alter the optic nerve and disease progression.
Its presence simply confirms that the subarachnoid space of the
optic nerve might not have free communication intracranial sub-
arachnoid space and thus TLCPD might be accordingly
affected.23

Early animal studies: IOP and CSF-P
Early studies by Morgan et al in dogs provided some of the
initial data on the relationship between IOP and CSF-P as well
as retinal perfusion. In dogs, Morgan et al looked at the effect
of CSF-P on retrolaminar tissue pressure and TLCPD at low
CSF-P, thought to mimic that of the erect position. This study
found that TLCPD is dependent on CSF-P when that pressure is
above 0.5 mm Hg.8 In a later study, Morgan et al looked at the
role of CSF-P on glaucoma. This study found that CSF-P and
IOP have equivalent effects on TLCPD and optic disc surface
movement. It was also found that CSF-P affects axonal transport
of the optic nerve, which might have an effect on glaucoma aeti-
ology and retinal venous outflow.25

Recently, there has been enhanced understanding of the
retinal vein pulsation by Morgan et al26, who determined that
the central retinal vein collapse in the eye occurs in conjunction
with intraocular diastole, not systole. It also occurs in time with
IOP and ICP diastole. Furthermore, the central retinal vein col-
lapse occurred in an insignificant 0.6% of a cardiac cycle before
the ICP minima but a significant 3.2% after the IOP minima,
suggesting that ICP pulse pressure drives ocular venous pulsa-
tion.26 In general, the ICP phase occurs before the IOP phase,
with ICP rising and falling slightly before IOP. The ICP pulse
driving venous pulsation leads to increased outflow during the
time of ICP minima. As the ICP rises first, leading to increased
resistance to venous outflow, intraocular blood accumulates
during systole. As the ICP falls slightly before the IOP in dia-
stole, intraocular blood drains. Others have postulated that the
phase difference would create a period of relatively higher
CSF-P compared with IOP and promote retrograde axoplasmic
flow of nutrients and metabolites towards the retina.27 Given
the association of venous pulsation with ICP, it is hypothesised
that there exists a low-resistance connection between the intra-
cranial CSF and the CSF surrounding the optic nerve.26 This
low-resistance connection does not have to be a continuous
fluid compartment but can rather represent compartments pro-
duced by deformable septa that allow for pressure transfer.

CSF-P, TLCPD and glaucoma
In a study looking at individuals with high-tension glaucoma,
normal tension glaucoma (NTG) and OHT, increased TLCPD
gradient was negatively associated with neuroretinal rim area
(p=0.006, r=−0.38) and positively associated with mean visual
field defect (p=0.008, r=0.38).28 Berdahl and colleagues
observed that cup-to-disc ratio was positively correlated with
TLCPD gradient.29 They also found that CSF-P was 33% lower
in study participants with primary open angle glaucoma (POAG)
compared with non-glaucomatous controls (9.2 mm Hg vs
13.0 mm Hg).

If indeed TLCPD is associated with glaucoma, one might
expect NTG patients to have reduced CSF-P causing increased
gradient despite normal IOP. In a prospective study by
Ren et al10, CSF-P was significantly lower in the NTG group
(9.5 mm Hg) than both the high IOP glaucoma group
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(11.7 mm Hg) and the control group (12.9 mm Hg). The
TLCPD gradient was significantly higher in those with glaucoma
(NTG 6.6 mm Hg, high IOP glaucoma 12.5 mm Hg) compared
with controls (1.4 mm Hg). Using multivariate analysis, the
TLCPD gradient was significantly associated with perimetric
visual field loss. However, when IOP and CSF-P were used as
individual parameters in the multivariate analysis, there was no
significant correlation between these individual parameters and
glaucomatous visual field loss.10

Perhaps increased CSF-P in OHT patients lowers TLCPD
gradient and explains the lack of glaucomatous damage despite
elevated IOP. When comparing OHT patients with non-
glaucoma controls, Ren et al30 found OHT patients to have sig-
nificantly higher CSF-P than controls (16.0±2.5 mm Hg and
12.9±1.9 mm Hg, respectively). Berdahl et al29 also found sig-
nificantly higher CSF-P in OHT patients over controls.
However, despite the association of higher CSF-P in OHT
patients with higher IOP, TLCPD gradient was significantly
higher in the OHT group.30 Ren and colleagues hypothesised
this could be explained by a pre-glaucomatous state in which
detectable perimetric or morphological changes had not yet
developed. They noted that patients in this group, if in fact they
would eventually develop glaucomatous damage, could have
benefitted from antiglaucoma treatment.30 Perhaps there is a
threshold pressure gradient to pass to develop damage, and such
a gradient is surpassed in OAG but not OHT. In fact, a previous
study showed that OHT patients have a lower TLCPD gradient
than POAG patients.9

BP, IOP, CSF-P AND OAG RISK
Large population-based studies have determined that IOP is sig-
nificantly associated with both systolic BP (SBP) and diastolic BP
(DBP).31–36 Dielemans et al34 demonstrated that a 10 mm Hg
increase in SBP resulted in a 0.23 mm Hg increase in IOP, and a
10 mm Hg increase in DBP caused a 0.24 mm Hg IOP increase.
Similarly, data from the Egna-Neumarkt Study found that
10 mm Hg increments in SBP and DBP caused IOP increases of
0.24 and 0.40, respectively.36

However, more notable is the extensive literature that points
towards the effect of decreased BP on OAG risk. A DBP less
than 90 mm Hg due to antihypertensive therapy in non-
glaucoma eyes is associated with decreased rim area and
increased optic disc cupping.37 Furthermore, various studies
have demonstrated a relationship between glaucoma progression
and hypotension.38 39 Patients with OAG with progression
despite well-controlled IOP, as well as NTG patients, exhibited
lower SBP throughout the day and night compared with healthy
controls.28 Patients with uncontrolled IOP did not have a BP
that varied from the controls. Subsequently, Graham et al39

found that a higher risk for glaucoma progression was asso-
ciated with large decreases in nocturnal BP. 40 With this in
mind, some argue that underlying impaired autoregulation of
ocular blood flow causes ischaemic periods followed by reperfu-
sion injury. In accordance, increased mean ocular perfusion
pressure fluctuation has been implicated as a risk factor for glau-
coma severity in NTG patients.40 Thus, appropriate SBP control
is imperative in glaucoma treatment. However, reduction of
arterial hypertension will also reduce CSF-P and affect the
TLCPD gradient.

The correlation between decreased BP and OAG risk could be
explained by the relationship between CSF-P and BP. It has been
suggested that reduction of arterial BP has been associated with
greater decrease in CSF-P than IOP in NTG patients.41

Disparate pressure decrease would increase the TLCPD gradient

and could explain glaucomatous optic nerve changes in patients
with normal IOP. Conversely, increased SBP may be associated
with increased CSF-P and may thus protect against glaucomat-
ous damage in OHT.41 Interestingly, arterial hypertension and
elevated CSF-P have also been implicated as risk factors for
retinal vein occlusion.41 Data on this topic are limited, and
more research is needed.

CARBONIC ANHYDRASE INHIBITORS
Currently, the only therapeutic strategies available to treat OAG
are targeted at lowering IOP. The four classes of topical medica-
tions include prostaglandin analogues, β-adrenergic receptor
antagonists, α2-adrenergic receptor agonists and carbonic anhy-
drase inhibitors. It is important to discuss the use of carbonic
anhydrase inhibitors specifically as they are also known to
decrease CSF production.42 Carbonic anhydrase inhibitors
remain an effective glaucoma treatment modality by lowering
IOP through reduction of aqueous humour formation.43 They
have been used in topical forms for POAG and in systemic
forms for acutely elevated IOP.1 Additionally, carbonic anhy-
drase inhibitors are used to decrease CSF production and thus
lower CSF-P in patients with idiopathic intracranial hyperten-
sion.42 With increasing evidence that TLCPD is associated with
glaucoma progression, carbonic anhydrase inhibitor effects on
IOP and CSF-P should be further evaluated. It is expected that
systemic carbonic anhydrase inhibitor administration for acute
angle closure glaucoma will reduce both IOP and CSF-P. As pre-
viously discussed, only TLCPD gradient, and neither IOP nor
CSF-P alone, was significantly associated with perimetric loss.10

Data are currently lacking as to how this class of medications
affects the interplay between IOP and CSF-P in glaucoma, and
no conclusions can be made at this time.

Relationship between BMI, IOP and CSF-P
BMI has been shown to be positively correlated with IOP with
multivariate regression analysis,44–47 even in children.48 Some
postulate that increased adipose tissue fills the orbit and
increases episcleral venous pressure, raising IOP.49 Others state
lipid deposits could reduce aqueous fluid outflow.50 Recently, a
study found that BMI only had a statistically significant associ-
ation with IOP when insulin resistance data were removed as a
covariate.51 It was suggested that perhaps the BMI and IOP rela-
tionship may be a manifestation of an association between
insulin resistance and IOP.

However, some studies did not reach statistical significance.
For instance, several studies only found a positive correlation
between IOP and BMI in men, not women.51 52 While the
Beijing Study found a relationship using univariate analysis, no
significant association was found through multivariate regression
analysis.35

Recently, BMI and its relation to glaucoma has been investi-
gated. Pasquale et al53 demonstrated that in women increased
BMI was associated with reduced risk of POAG with an IOP of
21 or less at diagnosis. No association was found in women
with an IOP greater than 21 at diagnosis. No relationship was
found in men. The Barbados Eye Study also concluded that
OAG prevalence decreased with increasing BMI.54 Furthermore,
men with a BMI≥28.5 had less than one-third the odds of
having OAG of men with a BMI≤21.71. Women with a
BMI≥32.50 had less than one-half the odds of OAG of women
with a BMI≤23.44.54 Perhaps racial differences can explain why
Pasquale et al did not also find a correlation with men. While
the Barbados Eye Study studied individuals of African descent,
Pasquale et al investigated patients of European descent.52
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Another explanation could be varying study methodology, as the
Barbados Eye Study did not correct for central corneal thick-
ness. However, Leske et al found that central corneal thickness
was not correlated with BMI.55 In addition, the Singapore
Malay Eye Study demonstrated reduced neuroretinal rim area
and increased cup-to-disc ratio were associated with reduced
BMI.56 In another population-based study, neuroretinal rim area
was associated with increasing BMI.57 However, other studies
suggest there is no correlation between BMI and glaucoma.58

Furthermore, a longitudinal cohort study of patients concluded
that OAG is more common in obesity with a HR of 1.06.59

If BMI is taken to reduce glaucoma risk, then the association
of increasing CSF-P with increasing BMI, and subsequent effect
on TLCPD gradient, might explain why this occurs. CSF-P has
been shown to be linearly correlated with BMI.60 Another study
found a trend between increased BMI and increased CSF-P but
failed to reach statistical significance (p=0.062).61 The patho-
physiology behind the increase in CSF-P with increasing BMI is
not fully understood, although theories have been postulated.
One such theory states that CSF-P increase is caused by hypo-
ventilation or obstructive sleep apnoea leading to respiratory
acidosis.50 Increased intra-abdominal pressure or venous
outflow obstruction may also increase central venous pressure,
resulting in increased CSF-P.62

Individuals with elevated BMI also are more likely to have
diabetes mellitus and hypertension.53 Obesity, with its associated
elevated CSF-P, appears protective for glaucoma; however, dia-
betes, which is also associated with obesity, is also considered a
controversial risk factor for OAG. Several large-scale clinical
trials have reported an increased risk of OAG in diabetics 63–66

while other large trials have shown no such association.67–70

Despite this, it appears the protective effect of BMI against glau-
coma overcomes the supposed increased risk of glaucoma due
to diabetes mellitus and dysregulation ofBP.59 Perhaps obesity’s
association with hypertension can also partially explain the posi-
tive correlation between BMI and CSF-P. However, much
remains to be explored in this relationship as other studies have
failed to reach significance between CSF-P and obesity.61

EFFECT OF AGE ON IOP AND CSF-P
Age is a well-known risk factor for OAG. Population-based
studies have found OAG prevalence to increase beginning in
approximately the fifth decade of life.71 72 However, studies are
inconsistent on the relationship between age and IOP, with some
studies showing no correlation and other studies showing that
IOP increases with age.73–75 A recent study by Fleischman et al
found a significant correlation between age and CSF-P. This
study found that CSF-P pressure began to decline steadily after
age 50 with a 2.5% decrease in those aged 50–54 and a
decrease of 26.9% in those aged 90–94 compared with those in
the age group 29–40.76 These data suggest that TLCPD caused
by a decreasing CSF-P with age might explain the increasing
incidence of OAG with age.

CONCLUSION
In conclusion, regulation of pressures in the arterial system, the
eye and the brain has profound influence on the development of
glaucomatous change. Systemic arterial BP, IOP and CSF-P are
inextricably tied to one another, and altering one often alters
another. An increased TLCPD difference has been associated
with visual field loss and increased neuroretinal rim area. This
increased gradient, whether due to decreased CSF-P or due to
increased IOP, may explain the existence of NTG and POAG,
respectively. Conversely, a normal gradient, despite increased

CSF-P and IOP, may explain the lack of visible glaucomatous
damage in OHT. Further research of TLCPD is warranted as
some studies suggest OHT patients eventually develop optic
nerve damage. Analysis of TLCPD gradients may help deter-
mine whether certain patients are more likely to develop glau-
comatous damage or whether others are likely to progress more
quickly with the disease. Better understanding of the IOP and
CSF-P relationship could influence treatment regimens. Yet, as
noted previously, the CSF-P and glaucoma relationship is com-
plicated as CSF-P is affected by displacement of lamina cribrosa,
body position, time of day and local changes in flow near the
globe. Furthermore, with diabetes and hypertension on the rise,
the BMI–CSF-P relationship warrants a front seat in the discus-
sion of glaucoma. As tighter BP control in patients remains a
high priority, the effects of changes in arterial BP on CSF-P
should be considered. A better understanding of the relation-
ships between such pressures and measurements has great poten-
tial in the treatment of glaucoma. Not unlike carbonic
anhydrase inhibitors, glaucoma medications may influence more
than one of these factors. Investigation of these factors may
provide insight into disease progression in patients while on
antiglaucoma medication.
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