
Ophthalmic statistics note:
the perils of dichotomising
continuous variables

INTRODUCTION
Continuous variables (such as intraocular pressure (IOP), visual
acuity, contrast sensitivity) are commonly measured in clinical
ophthalmology and vision research. In clinical practice, a ‘status’
(category) can sometimes be assigned to an individual patient
using a cutpoint in the value of a continuous variable; for
example, a diagnosis of glaucoma might be confirmed by an ele-
vated IOP measurement (eg, IOP >21 mm Hg). Indeed much of
medicine revolves around an implicit classification of individuals
into diseased and non-diseased. In clinical research, continuous
variables may likewise be converted to categorical variables,
assigning individuals to one of two groups. Although this may
be appropriate for some specific studies where the underlying
distribution of the variable shows a clear grouping, such dichot-
omisation has several drawbacks.1

Dichotomisation may be driven by the research question, for
example, a study to investigate the health service needs of those
with low vision, in which dichotomisation uses WHO visual
acuity threshold for low vision.2 It may sometimes be used to
bring the data in line with the clinical classification of patients but
often the reason for dichotomisation of data is that it is thought to
simplify the statistical analysis (eg, to enable use of a t test or a χ2

test) and the presentation and interpretation of data. However,
this simplification has a cost in terms of loss of information3 and
may compromise the validity of the statistical analysis. We will
discuss the disadvantages of dichotomisation and outline some
points to consider before categorising continuous data. It should
be noted that while the focus here is on categorisation of data into
two groups, the problems arising when dichotomising data are
inherent with any categorisation of data (two or more groups).

LOSS OF INFORMATION AND STATISTICAL POWER
Dichotomisation results, first, in the loss of descriptive informa-
tion on the study population. For example, the nature and
extent of differences between individuals with low vision is lost
when visual acuity is dichotomised as having/not having low
vision. Second, with dichotomisation there is loss of information
on between-subject variability in the study population as, for
instance, subjects with similar outcome measures but on either
side of the threshold will be described and analysed as different
while two subjects with values that are on the same side of the
threshold, but one near and another a long way from the thresh-
old, will be treated as if they are the same. In addition, it is not
possible to quantify linear relationships after dichotomising a
variable (eg, it is not possible to quantify the change in mm Hg
of IOP per mm Hg of systolic blood pressure (SBP) increase if
IOP has been dichotomised), and any non-linear relationship
would be masked by dichotomisation.

There may also be a loss of statistical power (the probability of
detecting a true effect of a particular size should it exist) associated
with dichotomisation. To maintain statistical power equivalent to
that for continuous data, dichotomised data require an increase in
sample size. Table 1 shows the sample size required to detect a sig-
nificant association (correlation) between IOP and SBP, at the 5%
significance level, assuming a linear change of 0.035 mmHg in
IOP per mmHg of SBP4 5 under two scenarios: (a) IOP as a con-
tinuous variable (sample size denoted as no) and (b) IOP

dichotomised using three different cutpoints (ie, different values
for the threshold of IOP that defines the two IOP categories;
sample size denoted as nd). Sample size values were calculated
using the sample size formulae available for the correlation coeffi-
cient6 for scenario (a), and for the two-sample t test7 (Equation
5.2) for scenario (b). Simulations were generated to calculate nd
and the reduction in power for scenario (b) shown in table 1.

When IOP is dichotomised, a larger sample size (nd) is needed
to detect a significant association while maintaining the same
power as an analysis with sample size no using IOP as a continu-
ous variable. For example, when IOP is analysed as continuous,
the sample size required is 119 individuals for a power of 90%. If
IOP is dichotomised using the mean as the cutpoint
(14.5 mm Hg), then the sample size required to maintain 90%
power increases to 175 individuals—56 additional patients. If the
condition of interest is rare, this increase in the required number
of patients might render a study infeasible. Alternatively, a reduc-
tion in power of at least 15% would occur if the sample size
remains at no=119 and IOP was dichotomised.

INTRODUCTION OF BIAS IN ASSOCIATIONS
In clinical research, the association observed between a risk
factor and an outcome can be affected by background factors
(such as age) that are associated with the risk factor while also
having an influence on the outcome. These background factors
are known as confounders. If confounders are present, the esti-
mation of the association of interest between the risk factor and
outcome can be biased. Clinical trials are designed to minimise
the effect of confounding, with subjects being randomised to
intervention or control groups to ensure the groups are balanced
with regard to the background factors. However, in epidemio-
logical and other clinical studies, estimates may be biased if the
effect of the confounding variable is not properly accounted for
in the analysis. If a confounder is taken into account but is
dichotomised, this may remove some but not all of the effects
of confounding and hence still result in bias.8 The magnitude of
the bias will depend on the selected cutpoint of dichotomisation
and the strength of the confounding effect.

For example, let us investigate if IOP is affected by whether
an individual has diabetes. The existing evidence suggests that
SBP is related to IOP and also diabetes and as such is a potential
confounding variable for the relationship between IOP and
whether or not a patient has diabetes (figure 1).

We can fit a linear regression model to estimate IOP with SBP
as a continuous covariate and diabetes as a factor with two levels

Table 1 Impact upon power and required sample size due to
dichotomisation

Power to
detect
association
(%)

IOP as a
continuous
variable
no

IOP as a binary variable

Cutpoint
(mm Hg) nd

Power if
n=no* (%)

90 119 14.5 175 73
16 207 67
13 212 67

80 90 14.5 133 61
16 161 55
13 162 54

Assumptions of the model: both IOP and SBP follow a normal distribution with
means equal to 14.5 and 135 mm Hg, respectively, and SDs equal to 2.4 and
20 mm Hg, respectively.
*Statistical power if sample size=no (as for IOP as a continuous variable) and IOP is
dichotomised and analysed accordingly.
IOP, intraocular pressure; SBP, systolic blood pressure.
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(Yes/No). Let us assume that the true model shows no relation-
ship between IOP and diabetes (ie, a model coefficient of zero for
the factor diabetes). The effect of diabetes is correctly estimated
as zero using linear regression with SBP as a continuous variable
(see dashed lines in figure 2). However, if instead we dichotomise
SBP, we find an effect of diabetes on IOP because patients with
diabetes are more likely to have SBP above the cutpoint and vice
versa (see solid lines in figure 2). In this example, when SBP is
dichotomised, data can be fitted using analysis of variance with
two factors, diabetes and dichotomised SBP. Figure 2 demon-
strates the effect of diabetes adjusted for low and high level of
confounding (panels A and B, respectively) dichotomising SBP
with a cutpoint of 140 mm Hg (median). In figure 2A, we would
estimate IOP to be on average 0.13 mm Hg higher in the diabetic
group compared with the non-diabetic group. With a higher level
of confounding (figure 2B), that is, a stronger relationship
between SBP and diabetes or larger differences between mean
SBP in the diabetes and non-diabetes groups, the bias is even
higher (0.26 mm Hg). The stronger the confounding between a
risk factor and a background variable, the larger the bias intro-
duced by dichotomising the confounding variable. With cutpoint
values more extreme than the median, the bias and the probabil-
ity of concluding that there is a significant effect of diabetes on
IOP when there is no true effect (ie, a type 1 error) increase.

POINTS FOR CONSIDERATION
It is not good practice to power a study, obtain data from a
number of individuals and then after completing data collection
to underpower the analysis by dichotomisation, thus discarding a
substantial amount of the data and information.8 It may be
appropriate to dichotomise data in certain cases, when the under-
lying distribution of the variable shows a clear grouping;
however, all decisions regarding cutpoints for categorisation
should be prespecified before conducting the analysis and reasons
for such decisions stated when writing a paper. It is poor practice,
for example, to perform the analysis using various data-derived
cutpoints and then select the threshold with the most ‘significant’
result (minimal p value approach). Using a threshold for dichoto-
misation that is dependent on the study sample and not the popu-
lation (eg, when the cutpoint is defined as the sample mean or
sample median) will result in a different cutpoint for each study.
Thus, results of individual studies will not be generalisable and
comparisons between studies may be problematic.

In summary, researchers and clinicians need to be aware of
and consider the potential loss of information, decrease in statis-
tical power and the bias that may be introduced by dichotomisa-
tion of continuous data.
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Figure 1 Systolic blood pressure (SBP) as a potential confounder of
the relationship between diabetes and intraocular pressure (IOP).

Figure 2 Biased estimates of the effect of diabetes on intraocular
pressure (IOP) when confounder systolic blood pressure (SBP) is
dichotomised. This simulation assumes that IOP follows a normal
distribution and increases on average by 0.035 mm Hg per 1 mm Hg
increase in SBP. We also assume that SBP follows a normal distribution
with means of 135 and 145 mm Hg for the non-diabetic and diabetic
groups, respectively (A) and 135 and 155 mm Hg for the non-diabetic
and diabetic groups, respectively (B). Finally, we assume that mean IOP
is the same in those with and without diabetes. The estimated effect of
diabetes on IOP is erroneously positively biased if SBP is dichotomised
(see solid curves). To illustrate the average bias, this simulation is
based on large number of individuals: 50 000 diabetic and 50 000
non-diabetic.
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