ABSTRACT

Background/aims To investigate outcomes following cataract surgery with and without primary intraocular lens (IOL) implantation in children under 2 years of age with congenital or infantile cataract.

Method Prospective population based cohort study undertaken through the British Isles Congenital Cataract Interest Group, with systematic data collection on children undergoing surgery in UK and Ireland between January 2009 and December 2010. ORs for the association between IOL implantation and visual acuity, postoperative glaucoma and reoperation at 1 year after surgery were estimated using multivariable regression analysis to control for potential confounders.

Results Of 221 children, 56/131 with bilateral and 48/90 with unilateral cataract underwent primary IOL implantation. IOL implantation was independently associated with better visual outcome in bilateral (OR 4.6, 95% CI 1.6 to 13.1, \(p=0.004\)) but not unilateral disease. IOL use increased the odds of reoperation requiring repeat general anaesthetic (bilateral OR 5.5, \(p<0.01\); unilateral OR 16.7, \(p<0.01\)). IOL implantation did not reduce the odds of postoperative glaucoma.

Conclusions The use of IOLs in cataract surgery in young children should be critically reassessed, particularly used in settings/communities where close, long-term follow-up is challenging. The absence of visual benefit and the lack of a previously postulated protective effect against postoperative glaucoma serve to question the value of IOLs in unilateral disease. The potential association between IOL use and better early visual outcomes in bilateral disease needs to be balanced against the risk of reoperation and exposure to additional general anaesthetics during a key period of neurodevelopment.

INTRODUCTION

Congenital and infantile cataract, despite its treatable nature, accounts for up to a fifth of the world’s 1.4 million blind children.\(^1\) Clinicians managing children under 2 years old with cataract face the challenging scenario of undertaking surgery in the proinflammatory environment of an infant eye, during the period of its most fundamental growth and development. Investigation of neural plasticity and critical periods of visual development\(^2\) has led to implementation of whole population screening in most resource rich countries to ensure the earliest possible detection: for example in the UK as part of the National Screening Committee’s Newborn and Infant Physical Examination programme,\(^3\) and has informed amblyopia management. More recently research on biomaterials has allowed the development of artificial intraocular lenses (IOL) as an alternative to aphakic contact lenses.\(^4\)

Early adopters of IOLs in infancy argued three theoretical advantages. First, the potential of permanent in situ correction to offer better visual rehabilitation, argued to be especially important in children with unilateral cataract, in whom amblyopic deprivation is particularly strong due to rivalry from the unaffected eye. Second, that IOLs would be particularly useful in developing countries to reduce the need and expense associated with regular clinic visits to update contact lenses, as well as the risks of infection where access to clean water is limited. Third, some argued that IOLs could reduce the risk of postoperative glaucoma, the key sight threatening complication of childhood cataract surgery. Practitioners attracted by the potential benefits of IOL implantation for infants have adopted their use with some rapidity over the past decade,\(^5\) despite an incomplete evidence base regarding risks, benefits or patient selection. There exists no robust evidence on outcomes for young children with bilateral cataract undergoing primary IOL implantation, and limited evidence on those with unilateral disease. We report visual and adverse outcomes at 1 year after primary surgery from IOLunder2, the population based cohort study of children with unilateral and bilateral cataract undergoing surgery with and without IOLs in the first 2 years of life in the British Isles during a 2-year period. The study was undertaken through our national collaborative research network, the British Isles Congenital Cataract Interest Group (BCCIG).

METHODS

The BCCIG, established in 1995, is a network of ophthalmologists specialising in congenital and infantile cataract, through which key national studies have been completed.\(^6\) Following a survey of paediatric cataract surgery practice to consolidate and expand membership (\(n=173\), see online supplementary appendix 1),\(^7\) 69 surgeons at 43 hospitals across the UK and 3 in the Republic of Ireland acted as the primary respondents, identifying and reporting data on children.

Any child resident in UK/Ireland undergoing surgery between January 2009 and December 2010 for congenital or infantile cataract in the first 2 years of life, with or without primary IOL implantation, was eligible for participation. BCCIG
Clinical science

Table 1 IoLUnder2 study phenotypes, outcome definitions and the potential predictors of outcome considered in statistical analysis

<table>
<thead>
<tr>
<th>Phenotypes</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphthalmos</td>
<td>Ocular axial length 15.5 mm at any age, or <17.5 mm if aged 1 month or older, <18 mm if aged 3 months or older, <19 mm if aged 6 months or older, or <20 mm if aged 2 years or older</td>
</tr>
<tr>
<td>Significant microphthalmos</td>
<td>Axial length <16 mm</td>
</tr>
<tr>
<td>Microcornea</td>
<td>Horizontal corneal diameter (HCD) <9.5 mm at any age, <10 mm if aged over 1 month old, or <10.5 mm in children over 6 months old</td>
</tr>
<tr>
<td>Persistent fetal vasculature</td>
<td>Any persistence of fetal intraocular vasculature detected preoperatively or peroperatively</td>
</tr>
<tr>
<td>Significant coexistent ocular abnormality</td>
<td>HCD<9.5 mm or axial length <16 mm or persistent ocular fetal vasculature (PFV) involving the anterior segment of the eye, or complex PFV, or other anterior segment or posterior segment abnormality</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Level 3: Acuity within normal range for ageLevel 2: Acuity worse than lower limit of normal rangeLevel 1: Unable to fix AND follow*</td>
</tr>
<tr>
<td>Intraocular lens (Iol) implantation</td>
<td>Intraocular lens (IoL) implantation, age at diagnosis, time from diagnosis of cataract to surgery, socioeconomic status, (gestational) age at surgery, age at visual assessment, axial length, HCD, compliance with occlusion and correction, surgeon, surgical technique, and the presence of microphthalmos, an interocular axial length difference, a significant ocular anomaly, preoperative nystagmus or strabismus, medical disorder or impairment, peroperative complication, postoperative visual axis opacity (VAO), glaucoma or other complication or secondary intraocular procedure. In bilateral cases, asymmetry of opacity was also considered as a potential predictor of visual outcome</td>
</tr>
<tr>
<td>Secondary glaucoma</td>
<td>Presence of a combination of signs consistent with IOP ≥21 mm Hg, eg, optic disc cupping ≥0.2/asymmetry ≥0.2/progression, corneal changes, progressive myopia (British Infantile and Childhood Glaucoma (BIG) Eye Study definition)</td>
</tr>
<tr>
<td>Potential predictors of incidence of glaucoma</td>
<td>Age (gestational) at surgery, cataract morphology, axial length, significant interocular axial length difference, HCD, surgeon, surgical technique, the presence of persistent fetal vasculature, peroperative iris trauma, preoperative Iol implantation, peroperative inflammation, postoperative inflammation or postoperative intraocular surgery, the use of posterior capsulotomy, oculoviscous devices, Iol implantation, postoperative intensive steroid drops, and postoperative systemic steroid</td>
</tr>
<tr>
<td>VAO</td>
<td>Lens proliferation into axis or inflammatory/papillary membrane across axis or capsular phimosis</td>
</tr>
<tr>
<td>Potential predictors of incidence of VAO</td>
<td>Age (gestational) at surgery, axial length, HCD, surgeon, the presence of persistent fetal vasculature, peroperative iris trauma, peroperative Iol explantation, postoperative inflammation, anterior/posterior capsulotomy technique, Iol implantation, Iol power, single piece Iols, Iol fixation position, peroperative heparin, postoperative intensive steroid regimen, and postoperative systemic steroid</td>
</tr>
</tbody>
</table>

Assessment of clinical phenotype and interventions
We used standardised definitions of the most commonly associated ocular anomalies of microphthalmos, microcornea and persistence of ocular fetal vasculature (table 1).6–10 Achievement of over 50% of prescribed occlusion/corrective wear as reported by caregivers was coded as ‘good’ concordance. Data on potential predictors of outcome and possible child and intervention-specific confounders (table 1), agreed a priori based on previous research and biological plausibility, were collected prospectively.

Outcomes
Visual outcome measured at least 1 year after surgery (best corrected acuity assessed using standard hospital-specific but harmonised approaches) was categorised into an ordinal scale using the normative age-related values for each test modality (see table 1 and online supplementary table C).11–13 This enabled direct comparison across different modalities. We used standardised definitions for the two most significant adverse outcomes, ‘secondary’ postoperative glaucoma (structural damage or neureathy secondary to elevated intraocular pressure)14 and visual axis opacity (VAO) (proliferation of either inflammatory material or remnant lens fibres).

Statistical analysis
Unilateral and bilateral cases were analysed separately. Data from both eyes of children with bilateral cataract were used with robust variance estimates to account for within-child correlation. We used multivariable ordinal or logistic regression, as appropriate, to estimate associations between visual outcome, incidence of glaucoma and VAO and child-specific/treatment-specific factors with adjustment for confounding factors (table 1).

We investigated the correlation between potential predictors of outcome and possible confounders using non-parametrical tests (with p value threshold of 0.05 for a significant correlation). Multivariable analysis, using conventional stepwise regression, included variables significant at a 10% level in initial univariable analysis. We retained factors in the multivariable model if they altered the risk ratio estimate by more than 10% or were independently associated at a 5% significance level. We included the most clinically relevant factors, and the more statistically significant of any highly correlated factors identified from univariable analysis. We investigated the impact of missing covariate data using multiple imputation models and that of missing visual outcome data using non-parametrical testing of the differences between children with or without outcome data. Analyses were undertaken using Stata (V12.1, StataCorp, College Station, Texas, USA).

RESULTS
We identified 306 eligible children. Comparisons with contemporaneous statutory hospital based reporting, and anticipated incidence, suggests near complete ascertainment.15 The families of 254 of these children (83%) consented to participation. Forty-eight per cent of recruited children were female, 76% of children were of white ethnicity and 27% were in the worst quintile of socioeconomic deprivation. Primary Iol implantation was undertaken in 61/151 (40%) of children with bilateral and
55/103 (53%) with unilateral cataract. Complete postoperative data at 1 year were available for 221 of the 254 children, or 350 operated eyes. Comparing the preoperative and peroperative characteristics of children for whom we did/did not have 1-year postoperative data, there was no evidence of attrition bias.

Preoperative characteristics

Overall, the median age at diagnosis of cataract was 1.8 weeks, and 9.2 weeks at surgery. Ocular comorbidity was common, in particular persistent fetal vasculature (53/221, 24% of children including 42/90, 47% those with unilateral cataract) and microphthalmos (133 children, 59%). Children undergoing IOI implantation were older, had larger eyes and were less likely to have coexistent ocular abnormalities at surgery than those with aphakia (table 2).

Peroperative adverse events

Peroperative complications occurred in 36 of the 350 operated eyes (10%), with more than one complication in two eyes (0.6%). Complications were more frequent with IOI implantation: 26 (16%) eyes versus 12 (6%) eyes in the aphakia group, (χ² test p<0.01). The most common complication was iris prolapse (15 eyes with IOIs, 3 with aphakia). Three eyes underwent peroperative implant removal due to poor visual outcome (15 eyes with IOIs, 3 with aphakia). Three eyes underwent peroperative implant removal due to poor visual outcome.

Glaucoma

Data on glaucoma outcome were available for all 221 children. Five children with preoperative glaucoma were excluded from the analysis of ‘secondary’ glaucoma. Twenty-eight of the remaining 216 children, (13%) were diagnosed with glaucoma during the first postoperative year (table 4). All had undergone cataract surgery in the first 6 months of life. Younger age at

Table 2: Summary of preoperative characteristics among children with bilateral and unilateral cataract, by implantation status

<table>
<thead>
<tr>
<th></th>
<th>Bilateral (n children=131)</th>
<th>Unilateral (n=90)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IOI n=56</td>
<td>Aphake n=75</td>
</tr>
<tr>
<td>Age at diagnosis (weeks)</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>IQR</td>
<td>0.1–57</td>
<td>0.1–16</td>
</tr>
<tr>
<td>Range</td>
<td>0–79</td>
<td>0–74</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Age at surgery (weeks)</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>IQR</td>
<td>7–97</td>
<td>6–29</td>
</tr>
<tr>
<td>Range</td>
<td>4–103</td>
<td>2–72</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axial length (mm)</td>
<td>19.3</td>
<td>17.7</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horizontal corneal diameter in mm</td>
<td>11</td>
<td>9.75</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Range</td>
<td>9–12</td>
<td>7–12</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cataract asymmetry</td>
<td>14 children, 25%</td>
<td>12 children, 16%</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microphthalmos</td>
<td>37 children, 66%</td>
<td>46 children, 61%</td>
</tr>
<tr>
<td>Significant microphthalmos</td>
<td>2, 4%</td>
<td>20, 27%</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Persistent fetal vasculature</td>
<td>4 children, 7%</td>
<td>7 children, 9%</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medical disorder/other impairment</td>
<td>13 children, 23%</td>
<td>22, 29%</td>
</tr>
<tr>
<td>Missing data</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ioi, intraocular lens.
surgery was the only factor independently associated with early postoperative glaucoma in bilateral cataract: each increasing week of age at surgery reduced the odds by 2% (adjusted OR 0.98, 95% CI 0.97 to 0.99, p<0.01). Significant microphthalmia was the only independent predictor of the development of glaucoma in unilateral disease (adjusted OR 12.1, 95% CI 1.8 to 81.8, p=0.01).

Reoperations
Data on reoperation were available for all 221 children. One hundred and five of the 350 operated eyes (30%) underwent reoperation, most of which (94/105) were for VAO (table 4). Median time from primary surgery to reoperation was 3.9 months. IoL implantation increased the odds of postoperative intervention for VAO in bilateral and unilateral cataract (adjusted OR 5.5, 95% CI 2.3 to 13.2, p<0.01 bilateral, adjusted OR 16.7, 95% CI 4.1 to 68.9, p<0.01 unilateral).

Other adverse events
These comprised corectopia (12 eyes, 3%), vitreous haemorrhage (6 eyes, all with persistent fetal vasculature), wound complications (3 eyes) and retinal detachment (1 eye).

DISCUSSION
IoLunder2 is a unique prospective population based cohort study of outcomes in children undergoing cataract surgery in the first 2 years of life, with high and unbiased ascertainment. We report outcomes 1 year following primary surgery, an important milestone for families and clinicians, and likely to correlate with longer-term outcome.16 17 We found evidence which suggests better early visual outcome, although not necessarily normal vision, with IoLs in bilateral cataract, though there is some uncertainty about the effect size. By contrast, we found no similar evidence for unilateral disease. We found glaucoma to be a frequent complication within the first postoperative year and that IoL implantation is not protective, as had been previously postulated. Notably, while younger age at surgery is associated with better early visual outcome18 (supporting the value of screening) it is also the major risk factor for glaucoma. We
also report the high rates of reoperation, especially to correct VAO following primary IOL use.

There are no equivalent studies with which to compare IOILunder2 directly. A North American group has recently reported a circumscribed randomised controlled trial (the Infant Aphakia Treatment Study), of IOL implantation in infants aged 6 months or under with unilateral cataract, and has recommended leaving the eye aphakic in this subgroup of the target population children. Our findings of a higher rate of reoperation and an absence of better visual outcome in unilateral cataract are in agreement with their key findings. More importantly, from IOILunder2 we are also able to suggest that the use of IOLs should be reconsidered in all children under 2 years of age with unilateral congenital and infantile cataract. Furthermore, we have addressed the role of IOLs in younger children with bilateral disease, which accounts for the majority of children affected by congenital and infantile cataract, and by definition for almost all children who would be rendered severely visually impaired by the disorder. We suggest that the value of IOLs in terms of potentially better early visual outcome in this group should to be balanced against the risk of high reoperation rates which expose children to repeat general anaesthetic in a key period of neurodevelopment.

Potential limitations of observational cohort studies such as IOILunder2 relate to bias and confounding. Active surveillance via a national clinical research network achieved a higher level of ascertainment than the statutory databases of clinical activity, which supports near-complete and thus unbiased ascertainment, although capture-recapture analysis was not possible. As shown by our survey of clinical practice, undertaken prior to the study, a high degree of uniformity of clinical approach exists across the UK/Ireland.开启关键点的管理，能够反映儿童早期发展的影响。

Table 4 Frequency of significant postoperative adverse events, that is, glaucoma related events and VAO

<table>
<thead>
<tr>
<th>Glaucoma</th>
<th>IOL</th>
<th>Aphake</th>
<th>Total</th>
<th>Unilateral cataract</th>
<th>IOL</th>
<th>Aphake</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular hypertension (uncorrected* IOP ≥21mmHg)</td>
<td>4 eyes (4%)</td>
<td>10 eyes (7%)</td>
<td>14 eyes (5%)</td>
<td>10 children (8%)</td>
<td>5 (10%)</td>
<td>7 (17%)</td>
<td>12 (13%)</td>
</tr>
<tr>
<td>Pupil block event</td>
<td>2 eyes</td>
<td>2 eyes</td>
<td>4 eyes (2%)</td>
<td>3</td>
<td>4</td>
<td>7 (8%)</td>
<td></td>
</tr>
<tr>
<td>Intervention for VAO</td>
<td>41 eyes (37%)</td>
<td>22 eyes (13%)</td>
<td>62 eyes (23%)</td>
<td>44 children (34%)</td>
<td>22 (42%)</td>
<td>12 (26%)</td>
<td>34 (35%)</td>
</tr>
<tr>
<td>VAO type</td>
<td>Proliferative</td>
<td>30</td>
<td>17</td>
<td>47</td>
<td>30 children</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>16 children</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Eyes requiring >1 procedure</td>
<td>5 eyes (5%)</td>
<td>6 eyes (4%)</td>
<td>11 eyes (4%)</td>
<td>8 children (6%)</td>
<td>6 (13%)</td>
<td>4 (10%)</td>
<td>10 (11%)</td>
</tr>
</tbody>
</table>

Children with pre-existing glaucoma were excluded from analysis of postoperative glaucoma related events.

*No correction for central corneal thickness or method used.
†Some eyes developed proliferative and inflammatory type VAO.
IOL, intraocular lens; VAO, visual axis opacity.

Secondary glaucoma following congenital/infantile cataract surgery invariably consigns children to frequent and indefinite follow-up, and often to multiple surgical interventions. Almost a half of affected children are severely visually impaired, and in some cases vision is worse than that reported for unoperated cataract. As about 5% of children develop glaucoma in each subsequent year following primary surgery, there is the prospect that the majority of the IOILunder2 cohort may eventually be affected. Future research into the pathogenesis of this iatrogenic and potentially blinding outcome is essential. Follow-up of the IOILunder2 cohort will afford further insight into natural history and risk factors, however as we have suggested that age is the key risk factor, future research should also focus on understanding the impact of surgery on normal early development of the anterior chamber through mechanisms such as exposure to lens epithelial cells or inflammation.

Historically, the late detection of congenital/infantile cataract was one of the main obstacles to achieving good outcomes and in response, in most industrialised countries, screening programmes were implemented. The Newborn and Infant Physical Examination programme of newborn/infant screening in the UK resulted in half of all children in IOILunder2 being diagnosed within the first fortnight of life enabling timely treatment. Our findings of associations between younger age at surgery and better visual outcome and glaucoma serve to highlight...
challenges of the timing of surgery. Such decision making requires prompt diagnosis even where treatment may be deferred. It is unlikely that visual outcomes in resource-poor countries will improve without strategies for early detection.

Much of the enthusiasm behind the rapid adoption of IOL use internationally has been the potential through a ‘one off’ intervention to achieve some degree of ‘permanent’ refractive correction, compared with the use of aphakic glasses or contact lenses for visual rehabilitation in settings where regular healthcare contact cannot be guaranteed. Our findings, and those of the recently reported others,16 should be reviewed in the context of the growing body of evidence relating to the possible association between multiple general anaesthetics in early childhood and long-term cognitive impairment.64 We suggest clinicians should now critically review practices. The longer-term follow-up of the IoLUNder2 cohort will identify the trajectories of visual development, and by capturing a ‘final’ acuity outcome will clarify whether the positive association between IOL use in bilateral disease and better visual outcome persists and its magnitude. More generally, we suggest that IoLUNder2 exemplifies the importance of rigorous observational epidemiological research in the evaluation of surgical innovations for uncommon disorders, ahead of widespread adoption.

Collaborators British Isles Congenital Cataract Interest Group.

Contributors ALS designed the data collection instruments, undertook data collection at 18 sites, coordinated data collection at the remaining sites, carried out the analyses and drafted the initial manuscript. IR-E designed the study and critically reviewed the manuscript. PMC supervised analysis and critically reviewed the manuscript. JSR conceptualised and designed the study, supervised data collection at the Centre. The funders had no role to play in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Disclaimer The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Competing interests None declared.

Ethics approval The study was approved by the joint UCL/UCLH (ref 08/H071/65), and the Dublin (ref 5AC/12/10/9) Research Ethics Committees.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

7 Larsen JS. The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty. Acta Ophthalmol (Copenh) 1971;49:873–86.
Risks and outcomes associated with primary intraocular lens implantation in children under 2 years of age: the IoLunder2 cohort study
Ameenat Lola Solebo, Isabelle Russell-Eggitt, Phillippa M Cumberland and Jugnoo S Rahi

Br J Ophthalmol 2015 99: 1471-1476 originally published online May 6, 2015
doi: 10.1136/bjophthalmol-2014-306394

Updated information and services can be found at:
http://bjo.bmj.com/content/99/11/1471

These include:

Supplementary Material
Supplementary material can be found at:
http://bjo.bmj.com/content/suppl/2015/05/06/bjophthalmol-2014-306394.DC1

References
This article cites 22 articles, 8 of which you can access for free at:
http://bjo.bmj.com/content/99/11/1471#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Editor’s choice (112)
Lens and zonules (807)
Paediatrics (358)
Angle (1006)
Glaucoma (988)
Intraocular pressure (1002)
Epidemiology (1068)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/