Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy

A Correction to this article was published on 01 August 1998

Abstract

Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease with a world-wide distribution1. It usually presents in the sixth decade with progressive swallowing difficulties (dysphagia), eyelid drooping (ptosis) and proximal limb weakness. Unique nuclear filament inclusions in skeletal muscle fibres are its pathological hallmark2. We isolated the poly(A) binding protein 2 gene (PABP2) from a 217-kb candidate interval on chromosome 14q11 (B.B. et al., manuscript submitted). A (GCG)6 repeat encoding a polyalanine tract located at the N terminus of the protein was expanded to (GCG)8–13 in the 144 OPMD families screened. More severe phenotypes were observed in compound heterozygotes for the (GCG)9 mutation and a (GCG)7 allele that is found in 2% of the population, whereas homozygosity for the (GCG)7 allele leads to autosomal recessive OPMD. Thvs the (GCG)7 allele is an example of a polymorphism which can act either as a modifier of a dominant phe-notype or as a recessive mutation. Pathological expansions of the polyalanine tract may cause mutated PABP2 oligomers to accumulate as filament inclusions in nuclei.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tomé, F.M.S. & Fardeau, M. in Myology (eds Engel, A.G. & Franzini-Armstrong, C.) 1233–1245 (McGraw-Hill, New York, 1994).

    Google Scholar 

  2. Tomé, F.M.S. & Fardeau, M. Nuclear inclusions in oculopharyngeal muscular dystrophy. Acta Neuropath. 49, 85–87 (1980).

    Article  Google Scholar 

  3. Rommens, J.M., Mar, L., McArthur, J., Tsui, L.-C. & Scherer, S. in Proceedings of the Third International Workshop on the Identification of Transcribed Sequences (eds Hochgeschwender, U. & Gardiner, K.) 65–79 (Plenum, New York, 1994).

    Google Scholar 

  4. Nemeth, A. et al. Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucleic Acids Res. 23, 4034–4041 (1995).

    Article  CAS  Google Scholar 

  5. Krause, S., Fakan, S., Weis, K. & Wahle, E. Immunodetection of poly(A) binding protein II in cell nucleus.Exp. Cell Res. 214, 75–82 (1994).

    Article  CAS  Google Scholar 

  6. Wahle, E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66, 759–768 (1991).

    Article  CAS  Google Scholar 

  7. Wahle, E., Lustig, A., Jenö, P. & Maurer, P., Poly(A)-binding protein II. J. Biol. Chem. 268, 2937–2945 (1993).

    CAS  PubMed  Google Scholar 

  8. Bienroth, S., Keller, W. & Wahle, E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 12, 585–594 (1993).

    Article  CAS  Google Scholar 

  9. Brais, B. et al The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac a and |3 myosin heavy chain genes on chromosome 14q11.2-q13. Hum. Mol. Genet. 4, 429–434 (1995).

    Article  CAS  Google Scholar 

  10. Rosenberg, R.N. DNA-triplet repeats and neurologic disease. New Eng. J. Med. 335, 1222–1224 (1996).

    Article  CAS  Google Scholar 

  11. Bouchard, J.-P., Marcoux, S., Gosselin, F., Pineault, D. & Rouleau, G.A. A simple test for the detection of the dysphagia in members of families with oculophayngeal muscular dystrophy (OPMD). Can. J. Neurol. Sci. 19, 296–297 (1992).

    Google Scholar 

  12. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  Google Scholar 

  13. Muragaki, Y., Mundlos, S., Upton, J. & Olsen, B.R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551 (1996).

    Article  CAS  Google Scholar 

  14. Akarsu, A.N., Stoilov, I., Yilmaz, E., Sayli, B.S. & Sarfarazi, M. Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum. Mol. Genet. 5, 945–952 (1996).

    Article  CAS  Google Scholar 

  15. Mundlos, S. et al Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779 (1997).

    Article  CAS  Google Scholar 

  16. Green, H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 24, 955–956 (1993).

    Article  Google Scholar 

  17. Warren, S.T. Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 275, 408–409 (1997).

    Article  CAS  Google Scholar 

  18. Wells, D.R. Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878 (1996).

    Article  CAS  Google Scholar 

  19. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunctions in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  20. Riggins, G.J. et al Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  Google Scholar 

  21. Simmons, A.H., Michal, C.A. & Jelinski, L.W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  Google Scholar 

  22. Forood, B., Pérez-Payá, E., Houghten, R.A. & Blondelle, S.E. Formation of an extremely stable polyalanine B-sheet macromolecule. Bioch. Biophys. Res. Comm. 211, 7–13 (1995).

    Article  CAS  Google Scholar 

  23. DiFiglia, M. et al Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  24. Paulson, H.L. et al Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    Article  CAS  Google Scholar 

  25. Scherzinger, E. et al Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  26. Skinner, P.J. et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974 (1997).

    Article  CAS  Google Scholar 

  27. Evans, G.A., Lewis, K. & Rothenberg, B.E. High efficiency vectors for cosmid microcloning and genomic analysis. Gene 79, 9–20 (1989).

    Article  CAS  Google Scholar 

  28. Lafrenière, R.G. et al 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nature Genet. 15, 298–302 (1997).

    Article  Google Scholar 

  29. Brunet, G., Tomé, F.M.S., Samson, F., Robert, J.M. & Fardeau, M. Dystrophie musculaire oculo-pharyngée. Recensement des families franchises éet tude généalogique. Rev. Neurol. 146, 425–429 (1990).

    CAS  PubMed  Google Scholar 

  30. Blumen, S.C. et al Clinical features of oculopharyngeal muscular dystrophy among Bukhara Jews. Neuromusc. Disord. 3, 575–577 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brais, B., Bouchard, JP., Xie, YG. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18, 164–167 (1998). https://doi.org/10.1038/ng0298-164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing