Skip to main content
Log in

Solvent drag of sucrose during absorption indicates paracellular water flow in the rat kidney proximal tubule

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Single convoluted proximal tubules of the rat kidney were lumen perfused in situ with isosmotic solutions containing C14-sucrose and H3-inulin as tracers, to evaluate whether the extracellular marker sucrose is entrained by water during proximal tubular reabsorption. Inulin was used as volume marker. The absorptive rate was varied by using as luminal perfusion fluids either a solution made up of (in mmole/l) 120 NaCl, 5 glucose, 25 NaHCO3 and altering the perfusion rate, or a solution containing 110 NaCl and 70 raffinose.J S, the net sucrose efflux is found to be a function of the net volume flow,J V, such that atJ V=0,J S is very small and at high rates ofJ V,J S is over 60-fold the value observed at lowJ V values. In addition, the transported to luminal sucrose concentrations decreased withJ V in a hyperbolic manner.

Unstirred layers affect the diffusive component ofJ S, but only to a small extent. Therefore, the large remaining dependency ofJ S withJ V must be due to drag of sucrose by water, within the paracellular pathway. This leads to the conclusion that water flows through the paracellular pathway during absorption in the rat proximal tubule, in addition to transcellular water flow. Using equations for molecular sieving and the measured value of σs for sucrose of 0.76–0.91, it is calculated that the pathway where entrainment of solute by water occurs must be 1.0–1.1 nm wide. This calculation is only tentative since σs depends on the as yet unknown relative contribution of transcellular and paracellular pathways to transepithelial water osmotic permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreoli TE, Schafer JA, Troutman SL (1971) Coupling of solute and solvent flows in porous bilayer membranes. J Gen Physiol 57:479–493

    Google Scholar 

  2. Andreoli TE, Schafer JA, Troutman SL, Watkins ML (1979) Solvent drag component of Cl flux in superficial proximal straight tubules: evidence for a paracellular component of isotonic fluid absorption. Am J Physiol 237:F455-F462

    Google Scholar 

  3. Barry PH, Diamond JM (1984) Effect of unstirred layers on membrane phenomena. Physiol Rev 64:763–872

    Google Scholar 

  4. Berry CA (1983) Water permeability and pathways in the proximal tubule. Am J Physiol 245:F279-F294

    Google Scholar 

  5. Berry CA (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am J Physiol 249:F729-F738

    Google Scholar 

  6. Berry CA, Boulpaep EL (1975) Nonelectrolyte permeability of the paracellular pathway in Necturus proximal tubule. Am J Physiol 228:581–595

    Google Scholar 

  7. Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 250: F680-F689

    Google Scholar 

  8. Carpi-Medina P, Whittembury G (1988) Comparison of transcellular and transepithelial water osmotic permeabilities in the isolated proximal straight tubule of the rabbit kidney. Pflügers Arch (in press)

  9. Carpi-Medina P, León V, Espidel J, Whittembury G (1988) Diffusive water permeability in isolated kidney proximal tubular cells: Nature of the cellular water pathways. J Membr Biol (in press)

  10. Case RM, Cook DI, Hunter M, Steward MC, Young JA (1985) Transepithelial transport of nonelectrolytes in the rabbit mandibular salivary gland. J Membr Biol 84:239–248

    Google Scholar 

  11. Cassola AC, Möllenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflügers Arch 399:259–265

    Google Scholar 

  12. Conway BE (1952) Electrochemical data, Elsevier, Amsterdam

    Google Scholar 

  13. Corman B, DiStefano A (1983) Does water drag solutes through the kidney proximal tubule? Pflügers Arch 397:35–41

    Google Scholar 

  14. Dainty J (1963) Water relations of plant cells. Adv Bot Res 1:279–326

    Google Scholar 

  15. Deetjen P (1978) Microperfusion of superficial tubules and peritubular capillaries. In: Andreucci VE (ed) Manual of renal micropuncture. Idelson, Naples, pp 208–218

    Google Scholar 

  16. Diamond JM (1979) Twenty-first Bowditch lecture. The epithelial junction: bridge, gate and fence. Physiologist 20:10–18

    Google Scholar 

  17. Diamond JM (1979) Osmotic water flow in leaky epithelia. J Membr Biol 51:195–216

    Google Scholar 

  18. Diamond JM (1980a) Discussion. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, Alfred Benzon Symposium 15:172–173

    Google Scholar 

  19. Diamond JM (1980b) Coupling of water transport to active solute transport in epithelia. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, Alfred Benzon Symposium 15: 354–363

    Google Scholar 

  20. Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenological description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pflügers Arch 343:189–220

    Google Scholar 

  21. Gertz KH (1963) Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch 276:336–356

    Google Scholar 

  22. Giebisch G, Klose RM, Malnic G, Sullivan WJ, Windhager EE (1964a) Sodium movements across single perfused proximal tubules of rat kidneys. J Gen Physiol 47:1175–1194

    Google Scholar 

  23. Giebisch G, Klose RM, Windhager EE (1964b) Micropuncture study of hypertonic NaCl loading in the rat. Am J Physiol 206:687–693

    Google Scholar 

  24. Green R, Giebisch G (1988) Reflection coefficients and fluid movement in rat proximal tubule. 2. Presence of active transport. Am J Physiol (in press)

  25. Hill BS, Hill AE (1978a) Fluid transfer in Necturus gall bladder epithelium as a function of osmolarity. Proc R Soc B 200:151–162

    Google Scholar 

  26. Hill AE, Hill BS (1978b) Sucrose and junctional water flow across Nectures gallbladder epithelium. Proc R Soc B 200: 163–174

    Google Scholar 

  27. Kaissling B, Kriz W (1985) Structure-function correlation in transporting epithelia. In: Seldin D, Giebisch G (eds) The kidney. Physiology and pathology. Raven Press, New York, pp 307–316

    Google Scholar 

  28. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Google Scholar 

  29. Kedem O, Katchalsky A (1963a) Permeability of composite membranes. Part 2. Parallel elements. Trans Faraday Soc 59:1931–1940

    Google Scholar 

  30. Kedem O, Katchalsky A (1963b) Permeability of composite membranes. Part 3. Series array of elements. Trans Faraday Soc 59:1941–1953

    Google Scholar 

  31. Keith NM, Power MH (1937) The urinary excretion of sucrose and its distribution in the blood after intravenous injection into normal men. Am J Physiol 120:203–211

    Google Scholar 

  32. Malnic G, Mello-Aires M, Lacaz Vieira F (1970) Chloride excretion in nephrons of rat kidney during alterations of acidbase equilibrium. Am J Physiol 218:20–26

    Google Scholar 

  33. Maunsbach AB (1973) Ultrastructure of the proximal tubule. In: Orloff J, Berliner RW (eds) Handbook of physiology. Section 8. Renal physiology. American Physiological Society, Washington, pp 31–79

    Google Scholar 

  34. Oberhausen E, Muth H (1969) Double tracer techniques. In: Passow H, Stämpfli R (eds) Laboratory techniques in membrane biophysics. Springer, Berlin Heidelberg New York, pp 181–193

    Google Scholar 

  35. Preisig PA, Berry CA (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol 249:F124-F131

    Google Scholar 

  36. Renkin EM, Curry FE (1979) Transport of water and solutes across capillary endothelium. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol IVA. Academic Press, New York, pp 1–45

    Google Scholar 

  37. Sackin H, Boulpaep EL (1975) Models for coupling salt and water transport. J Gen Physiol 66:671–733

    Google Scholar 

  38. Silbernagl S, Despopoulos A (1983) Taschenatlas der Physiologie. Thieme, Stuttgart New York, pp 360

    Google Scholar 

  39. Sonnenberg H, Deetjen P (1964) Methoden zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch 278:669–674

    Google Scholar 

  40. Steinitz K (1941) The renal excretion of sucrose in normal man; comparison with inulin. Am J Physiol 129:252–258

    Google Scholar 

  41. Tripathi S, Boulpaep EL (1988) Routes and mechanisms of osmotic water flow across the isolated perfused Ambystoma proximal tubule. Am J Physiol (in press)

  42. Ullrich KJ (1973) Permeability characteristics of mammalian nephron. In: Orloff J, Berliner RW (eds) Handbook of physiology. Section 8. Renal physiology. Am Physiol Soc, Washington 8:377–414

    Google Scholar 

  43. Weinstein AM (1987) Convective paracellular solute flux. A source of ion-ion interaction in the epithelial transport equations. J Gen Physiol 89:501–518

    Google Scholar 

  44. Whittembury G (1967) Sobre los mecanismos de absorcion en el túbulo proximal de riñón. Acta Cient Venez 18 (Suppl 3):71–83

    Google Scholar 

  45. Whittembury G, Carpi-Medina P (1987) Mechanisms of water transport across tubular epithelia: routes for movement. In: McLennan H, Ledsome JR, McIntosh CHS, Jones DR (eds) Advances in physiological research. Plenum Press, New York, pp 455–468

    Google Scholar 

  46. Whittembury G, Verde-Martinez C, Linares H, Paz-Aliaga A (1980) Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc R Soc B 211:63–81

    Google Scholar 

  47. Whittembury G, Malnic G, Mello-Aires M, Amorena C (1981) Flujo paracelular de agua en tubo renal proximal de rata. Acta Cient Venez 32: (Suppl 1) p 41

    Google Scholar 

  48. Whittembury G, Paz Aliaga A, Biondi A, Carpi-Medina P, Gonzalez E, Linares H (1985) Pathways for volume flow and volume regulation in leaky epithelia. Pflügers Arch 405:S17-S22

    Google Scholar 

  49. Whittembury G, Biondi A, Paz Aliaga A, Linares H, Parthe V, Linares N (1986) Transcellular and paracellular flow of water during secretion in the upper segment of the Malpighian tubule ofRhodnius prolixus: solvent drag of graded sized molecules. J Exp Biol 123:71–92

    Google Scholar 

  50. Windhager EE (1968) Micropuncture techniques and nephron function. Butterworths, London

    Google Scholar 

  51. Windhager EE, Whittembury G, Schatzmann HJ, Oken DE, Solomon AK (1959) Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol 197:313–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittembury, G., Malnic, G., Mello-Aires, M. et al. Solvent drag of sucrose during absorption indicates paracellular water flow in the rat kidney proximal tubule. Pflugers Arch. 412, 541–547 (1988). https://doi.org/10.1007/BF00582545

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582545

Key words

Navigation