Skip to main content
Log in

Updating on intraoperative light-induced retinal injury

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

We are presenting the state of knowledge concerning intraoperative light-induced retinal injury, considered to be a combination of photic retinopathy and retinal photocoagulation. It may arise from retinal light exposure to the operating microscope or to the fiberoptic endoilluminator. Ultraviolet and short-wavelength visible light are more dangerous than longer wavelength light. Many risk factors may facilitate the onset of this iatrogenic disease following surgery. Many aspects of the retinal damage are still poorly understood. Many mild light-induced retinal injuries probably remain undiagnosed in routine postoperative examination. Current appropriate light filters are not the definitive solution. Appropriate precautions should be taken during both anterior segment and vitreoretinal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Henry MM, Henry LM, Henry LM. A possible cause of chronic cystic maculopathy. Ann Ophthalmol 1977; 9: 455–7.

    Google Scholar 

  2. Hochheimer BF, D'Anna SA, Calkins JL. Retinal damage from light. Am J Ophthalmol 1979; 88: 1039–44.

    Google Scholar 

  3. McDonald HR, Irvine AR. Light-induced retinopathy from the operating microscope in extracapsular cataract extraction and intraocular lens implantation. Ophthalmology 1983; 90: 945–51.

    Google Scholar 

  4. Irvine AR, Copenhagen DR. The focal nature of retinal illumination from the operating microscope. Arch Ophthalmol 1985; 103: 549–50.

    Google Scholar 

  5. Khwarg SG, Linstone FA, Daniels SA, Isenberg SJ, Hanscom TA, Geoghegan M, Straatsma BR. Incidence, risk factors, and morphology in operating microscope light retinopathy. Am J Ophthalmol 1987; 103: 255–63.

    Google Scholar 

  6. Robertson DM, McLaren JW. Photic retinopathy from the operating microscope. Study with filters. Arch Ophthalmol 1989; 107: 373–5.

    Google Scholar 

  7. Calkins JL, Hochheimer BF. Retinal light exposure from operating microscope. Arch Ophthalmol 1979; 97: 2363–7.

    Google Scholar 

  8. Hupp SL. Delayed incomplete recovery of macular function after photic retinal damage associated with extracapsular cataract extraction and posterior lens insertion. Arch Ophthalmol 1987;105: 1022–3.

    Google Scholar 

  9. Berler DA, Peyser R. Light intensity and visual acuity following cataract surgery. Ophthalmology 1983; 90: 993–6.

    Google Scholar 

  10. Boldrey EE, Ho BT, Griffith RD. Retinal burns occurring at cataract extraction. Ophthalmology 1984; 91: 1297–302.

    Google Scholar 

  11. Brod RD, Barren BA, Suelflow JA, Franklin RM, Packer AJ. Phototoxic retinal damage during refractive surgery. Am J Ophthalmol 1986;102: 121–3.

    Google Scholar 

  12. Khwarg SG, Geoghegan M, Hanscom TA. Light-induced maculopathy from the operating microscope. Am J Ophthalmol 1984; 98: 628–30.

    Google Scholar 

  13. Ross WH. Light induced maculopathy. Am J Ophthalmol 1984; 98: 488–93.

    Google Scholar 

  14. Stamler JF, Blodi CF, Verdier D et al. Microscope light-induced maculopathy in combined penetrating keratoplasty, extracapsular cataract extraction, and intraocular lens implantation. Ophthalmology 1988; 95: 1142–6.

    Google Scholar 

  15. Johnson RN, Schatz M, McDonald HR. Photic maculopathy: early angiographic and ophthalmoscopic findings and late development of choroidal folds. Arch Ophthalmol 1987; 105: 1633–4.

    Google Scholar 

  16. Lindquist TD, Grutzmacher RD, Gofman JD. Light-induced maculopathy potential for recovery. Arch Ophthalmol 1986; 104: 1641–7.

    Google Scholar 

  17. Cech JM, Choromokose EA, Sanitato JA. Light induced maculopathy following penetrating keratoplasty and intraocular lens implantation. Arch Ophthalmol 1987; 105: 751.

    Google Scholar 

  18. DeLaey JJ, DeWachter A, VanOye R et al. Retinal phototrauma during intraocular lens implantation. Int Ophthalmol 1984; 7: 109–16.

    Google Scholar 

  19. Robertson DM, Feldman RB, Photic retinopathy from the operating room microscope. Am J Ophthalmol 1986; 101: 561–9.

    Google Scholar 

  20. Jampol LM, Kraff MC, Sanders DR, Kenneth A, Lieberman H. Near-UV radiation from the operating microscope and pseudophakic cystoid macular edema. Arch Ophthalmol 1985; 103: 28–30.

    Google Scholar 

  21. Hardten DR, Lindstrom RL. Complications of cataract surgery. Int Ophthalmol Clin 1992; 32: 131–55.

    Google Scholar 

  22. Kramer T, Brown R, Lynch M, Sternberg P Jr, Buchek G, L'Hernault N, Grossniklaus HE. Molteno implants and operating microscope-induced retinal phototoxicity. A clinicopathologic report. Arch Ophthalmol 1991; 109: 379–83.

    Google Scholar 

  23. Rouland JF, Constantinides G, Turut P. Light-induced maculopathy following epikeratoplasty. Refract Corneal Surg 1990; 6: 270–1.

    Google Scholar 

  24. Fuller D, Machemer R, Knighton RW. Retinal damage produced by intraocular fiber optic light. Am J Ophthalmol 1978; 85: 519–37.

    Google Scholar 

  25. Kuhn F, Morris R, Massey M. Photic retinal injury from endoillumination during vitrectomy. Am J Ophthalmol 1991; 111: 42–6.

    Google Scholar 

  26. McDonald HR, Harris MJ. Operating microscope-induced retinal phototoxicity during pars plana vitrectomy. Arch Ophthalmol 1988;106: 521–3.

    Google Scholar 

  27. Rinkoff J, Machemer R, Hida T, Chandler D. Temperaturedependent light damage to the retina. Am J Ophthalmol 1986; 102: 452–62.

    Google Scholar 

  28. Meyers SM, Bonner RF. Retinal irradiance from vitrectomy endoilluminators. Am J Ophthalmol 1982; 94: 26–9.

    Google Scholar 

  29. McDonald HR, Verre WP, Aaberg TM. Surgical management of idiopathic epiretinal membranes. Ophthalmology 1986; 93: 978.

    Google Scholar 

  30. Michels M, Lewis H, Abrams GW, Han DP, Mieler WF, Neitz J. Macular phototoxicity caused by fiberoptic endoillumination during pars plana vitrectomy. Am J Ophthalmol 1992; 114: 287–96.

    Google Scholar 

  31. Kelly NE, Wendel RT. Vitreous surgery for ideopathic macular holes. Results of a pilot study. Arch Ophthalmol 1991; 109: 654–9.

    Google Scholar 

  32. Stern WH. Complications of vitrectomy. Int Ophthalmol Clin 1992; 32: 205–12.

    Google Scholar 

  33. Sliney DH. Eye protective techniques for bright light. Ophthalmology 1983; 90: 937–44.

    Google Scholar 

  34. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol Vis Sci 1962; 1: 776–83.

    Google Scholar 

  35. Lerman S. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence and NMR) analyses. Am J Optom Physiol Optics 1987; 64: 11–22.

    Google Scholar 

  36. Brancato R, Pratesi R. Application of diode laser in ophthalmology. Laser Ophthalmol 1987; 1: 119–29.

    Google Scholar 

  37. Azzolini C, Docchio F, Brancato R, Trabucchi G. Interactions between light and vitreous fluid substitutes. Arch Ophthalmol 1992; 110: 1468–71.

    Google Scholar 

  38. Kirschfeld K. Carotenoid pigments. Their possible role in protecting against photooxidation in eyes and photoreceptorcells. Proc R Soc Lond (Biol) 1982; 216: 71–85.

    Google Scholar 

  39. Jaffe GJ, Wood I. Retinal phototoxicity from the operating microscope: Protective effect by the fovea. Arch Ophthalmol 1988; 106: 445–6.

    Google Scholar 

  40. Ham WT, Mueller HA, Ruffolo JJ, Millen JE, Cleary SF, Guerry RK, Guerry D. Basic mechanisms underlying the production of photochemical lesions in mammalian retina. Curr Eye Res 1984; 3: 165–74.

    Google Scholar 

  41. Rapp LM, Williams TP. The role of ocular pigmentation in protecting against retinal light damage. Vision Res 1980; 20: 127–31.

    Google Scholar 

  42. Michels M, Sternberg P Jr. Operating microscope-induced retinal phototoxicity: pathophysiology, clinical manifestations and prevention. Surv Ophthalmol 1990; 34: 237–52.

    Google Scholar 

  43. Zak R, Jabbour N, Brown S. The effects of retinal hypothermia on argon blue green laser threshold in vitrectomized rabbit eyes. Invest Ophthalmol Vis Sci (Suppl) 1988; 29: 292.

    Google Scholar 

  44. De Lint PJ, van Norren D, Toebosch AM. Effect of body temperature on threshold for retinal light damage. Invest Ophthalmol Vis Sci 1992; 33: 2382–7.

    Google Scholar 

  45. Ham WT, Ruffolo JJ, Mueller HA et al. The nature of retinal radiation damage: Dependence on wavelength, power level, and exposure time. Vision Res 1980; 20: 1105–11.

    Google Scholar 

  46. Davidson PC, Sternberg P Jr. Potential retinal phototoxicity. Am J Ophthalmol 1993; 116: 497–501.

    Google Scholar 

  47. Cowan CL Jr. Light hazards in the operating room. J Natl Med Assoc 1992; 84: 425–9.

    Google Scholar 

  48. Mainster MA. Photic retinal injury. In: Ryan SJ (ed.) Retina, vol 2, St. Louis, The C.V. Mosby Co. 1990: 749–57.

    Google Scholar 

  49. Sliney DH, Armstrong BC. Radiometric evaluation of surgical microscope lights for hazard analyses. Applied Optics 1986; 25: 1882–9.

    Google Scholar 

  50. Michels M, Dawson WW, Feldman RB, Jarolem K. Infrared, an unseen and unnecessary hazard in ophthalmic devices. Ophthalmology 1987; 94: 143–8.

    Google Scholar 

  51. Mori K, Yoneya S, Hayashi N, Abe T. Retinal damage induced by visible blue and near-infrared light of an operating microscope. Nippon Ganka Gakkai Zasshi 1992; 96: 1112–9.

    Google Scholar 

  52. Roberts JE, Reme CE, Dillon J, Terman M. Exposure to bright light and the concurrent use of photosensitizing drugs (letter). N Engl J Med 1992;326 (22): 1500–1.

    Google Scholar 

  53. Azzolini C, Docchio F, Brancato R. Refractive hazards of intraoperative retinal photocoagulation. Ophthalmic Surg 1993; 24: 16–23.

    Google Scholar 

  54. Jaffe GJ, Irvine AR, Wood IS, Severinghaus JW, Pino GR, Haugen C. Retinal phototoxicity from the operating microscope. The role of inspired oxygen. Ophthalmology 1988; 95: 1130–41.

    Google Scholar 

  55. Parver LM, Mitchard R, Ham WT. Sensitivity to retinal light damage and surgical blood oxygen levels. Ann Ophthalmol 1989; 21: 386–8.

    Google Scholar 

  56. Lee FL, Yu DY, Tso MOM. Effect of continuous versus multiple intermittent light exposure on rat retina. Curr Eye Res 1990; 9: 11.

    Google Scholar 

  57. Irvine AR, Wook I, Morris AW. Retinal damage from the illumination of the operating microscope. An experiment and study in pseudophakic monkeys. Arch Ophthalmol 1984; 102: 1358–65.

    Google Scholar 

  58. Lawwill T, Crockett S, Currier G. Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Doc Ophthalmol 1977; 44: 379–402.

    Google Scholar 

  59. Colvard DM. Operating microscope light-induced retinal injury: Mechanisms, clinical manifestation and preventive measures. Am Infra-Ocular Implant Soc J 1984; 10: 438–43.

    Google Scholar 

  60. Griess GA, Blankenstein MF. Additivity and repair of actinic retinal lesions. Invest Ophthalmol Vis Sci 1981; 20: 803–7.

    Google Scholar 

  61. Kraff MC, Lieberman HL, Jampol LM, Sanders DR. Effect of apupillary light occluderon cystoid macular edema. J Cataract Refract Surg 1989; 15: 658–60.

    Google Scholar 

  62. Jampol LM. Aphakic cystoid macular edema: a hypothesis. Arch Ophthalmol 1984; 103: 1134–5.

    Google Scholar 

  63. Mannis M, Becker B. Retinal light exposure and cystoid macular edema. Arch Ophthalmol 1980; 98: 133.

    Google Scholar 

  64. Cruickshanks KJ, Klein R, Klein BEK. Sunlight and ageelated macular degeneration. The Beaver Dam Eye study. Arch Ophthalmol 1993; 111: 514–8.

    Google Scholar 

  65. Simons K. Artificial light and early-life exposure in age-related macular degeneration and in cataractogenic phototoxicity (letter; comment). Arch Ophthalmol 1993; 111: 297–8.

    Google Scholar 

  66. Taylor HR, Munoz B, West S, Bressler NM, Bressler SB, Rosenthal FS. Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc 1990; 88: 163–73.

    Google Scholar 

  67. Young RW. Solar radiation and age related macular degeneration. Surv Ophthalmol 1988; 32: 252–69.

    Google Scholar 

  68. Ramirez J, Meyer U, Stoppa M, Wenzel M. Electrophysiological and morphological changes in rabbit retina after exposure to the light of the operating microscope. Graefe's Arch Clin Exp Ophthalmol 1992; 230: 380–4.

    Google Scholar 

  69. Orzalesi N. Exposure to the light of an operating microscope (letter). Graefe's Arch Clin Exp Ophthalmol 1993; 231: 674.

    Google Scholar 

  70. Hoeppler T, Hendrickson P, Dietrich C, Reme C. Morphology and time course of defined photochemical lesions in the rabbit retina. Curr Eye Res 1988; 7: 849–60.

    Google Scholar 

  71. Sykes SM, Robinson WG Jr, Waxier M et al. Damage to the monkey retina by broad spectrum fluorescent light. Invest Ophthalmol Vis Sci 1981; 20: 425–34.

    Google Scholar 

  72. Lawwill T. Three major pathologic processes caused by light in the primate retina: A search for mechanisms. Trans Am Ophthalmol Soc 1982; 80: 517–79.

    Google Scholar 

  73. Kremers JJM, van Nooren D. Two classes of photochemical damage of the retina. Laser Light Ophthalmol 1988; 2: 41–52.

    Google Scholar 

  74. Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 1980; 20: 1163–71.

    Google Scholar 

  75. Li Z-L, Tso MON, Jampol LM, Miller SA, Waxier M. Retinal injury induced by near-ultraviolet radiation in aphakic and pseudophakic monkey eyes. A preliminary report. Retina 1990; 10: 301–14.

    Google Scholar 

  76. Green WR, Robertson DM. Pathologic findings of photic retinopathy in the human eye. Am J Ophthalmol 1991; 112: 520–7.

    Google Scholar 

  77. Zilis JD, Machemer R. Light damage in detached retina. Am J Ophthalmol 1991; 111: 47–50.

    Google Scholar 

  78. Silverman MS, Hughes SE. Transplantation of photoreceptors to light-damaged retina. Invest Ophthalmol Vis Sci 1989; 30: 1684–90.

    Google Scholar 

  79. Zuclich JA. Ultraviolet-induced photochemical damage in ocular tissues. Health Phys 1989; 56: 671–82.

    Google Scholar 

  80. Chen WH, Zhang HR. Determination of retinal illumination from operating microscopes and assessment of risk. Chung Hua Yen Ko Tsa Chih 1993; 29: 100–2.

    Google Scholar 

  81. Brod RD, Olsen KR, Ball SF, Packer AJ. The site of operating microscope light-induced injury on the human retina. Am J Ophthalmol 1989; 107: 390–7.

    Google Scholar 

  82. Brod RD. Prevention of operating microscope and endoilluminator-induced retinal phototoxicity. Vitreoretinal Surg Technol 1992; 3: 4.

    Google Scholar 

  83. Koch FHJ, Schmidt HP, Monks T, Blumenroder SH, Haller A, Steinmetz RL. The retinal irradiance and spectral properties of the multiport illumination system for vitreous surgery. Am J Ophthalmol 1993; 116: 489–96.

    Google Scholar 

  84. Borsje RA, Vrensen GF, van Best JA, Oosterhuis JA. Fluorophotometric assessment of blood-retinal barrier function after white light exposure in the rabbit eye. Exp Eye Res 1990; 50: 297–304.

    Google Scholar 

  85. Gass IDM. Stereoscopic atlas of macular diseases: diagnosis and treatment, ed 3, St Louis, The C.V. Mosby Co. 1987.

    Google Scholar 

  86. Gomolin JE, Koenekoop RK. Presumed photic retinopathy after cataract surgery: an angiographic study. Can J Ophthalmol 1993; 28: 221–4.

    Google Scholar 

  87. Noell WK, Albrecht R. Irreversible effects of visible light in the retina: role of vitamin A. Science 1971; 172: 76–9.

    Google Scholar 

  88. Schalch W, Carotenoids in the retina — a review of their possible role in preventing or limiting damage caused by light and oxygen. EXS 1992; 62: 280–98.

    Google Scholar 

  89. Li Z-Y, Tso MOM, Wang H, Organisciak DT. Amelioration of photic injury in the rat retina by ascorbic acid. A histopathologic study. Invest Ophthalmol Vis Sci 1985; 26: 1589–98.

    Google Scholar 

  90. Organisciak DT, Wang HM, Li Z-Y et al. The protective effect of ascorbate in retinal light damage in the rats. Invest Ophthalmol Vis Sci 1985; 26: 1580–8.

    Google Scholar 

  91. Tso MOM, Woodford BJ, Lam KW. Distribution of ascorbate in normal primate retina after photic injury: a biochemical morphological correlated study. Curr Eye Res 1984; 3: 181–91.

    Google Scholar 

  92. Patterson DSP, Sweasey D, Roberts BA et al. The protective effect of promethazine treatment against photoperoxidation of lipids in turkey eyes. Exp Eye Res 1974; 19: 267–72.

    Google Scholar 

  93. Parver LM, Auker CR, Fine BS. Observations on monkey eyes exposed to light from an operating microscope. Ophthalmology 1983; 90: 964–72.

    Google Scholar 

  94. Parver LM, Auker CR, Fine BS, Doyle T. Dexametazone protection against photochemical retinal injury. Arch Ophthalmol 1984; 102: 772–7.

    Google Scholar 

  95. A new retinal protection device for Zeiss OPMI operation microscopes. In: Microsurgery in Practice, Published for Carl Zeiss, Inc. 1987:3.

  96. Mclntyre DJ. Phototoxicity: The eclipse filters. Ophthalmology 1985; 92: 364–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzolini, C., Brancato, R., Venturi, G. et al. Updating on intraoperative light-induced retinal injury. Int Ophthalmol 18, 269–276 (1994). https://doi.org/10.1007/BF00917829

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917829

Key words

Navigation