Skip to main content
Log in

Viability of retinal ganglion cells after optic nerve crush in adult rats

  • Published:
Journal of Neurocytology

Summary

The response of retinal ganglion cells to optic nerve crush was examined in the hooded rat. Intracranial nerve crush produces a transient shrinkage of the retinal ganglion cells during the first several weeks postoperatively but partial recovery of cell size then appears to occur. This transient response is considered to be a direct response to axotomy. Retrograde transport of horseradish peroxidase (HRP) is clearly demonstrated at 2 weeks postoperatively. Transport of newly synthesized protein progressively decreases over the first 2 postoperative months. The ganglion cell therefore retains viability for at least the first few weeks after axotomy. Loss of 60% of the neurons in the ganglion cell layer occurs between 3 and 7 months postoperatively. This late occurring retrograde response is considered to result at least in part from loss of sustaining trophic influences rather than as a direct result of the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguayo, A. J., Bray, G. M., Jerkins, C. S. &Duncan, L. D. (1979) Axon sheath interactions in peripheral and central nervous system transplants.Society for Neurosciences Symposium 4, 361–83.

    Google Scholar 

  • Aguayo, A. J., David, S. &Bray, G. M. (1981) Influences of the glial environment on the elongation of axons after injury.Journal of Experimental Biology 93, 231–40.

    Google Scholar 

  • Aldskogius, H., Barron, K. D. &Regal, R. (1980) Axon reaction in dorsal motor vagal and hypoglossal neurons of adult rat. Light microscopy and RNA-cytochemistry.Journal of Comparative Neurology 193, 165–77.

    PubMed  Google Scholar 

  • Aldskogius, H. &Risling, M. (1982) Number and size distribution of L7 dorsal root axons and ganglion cells after transaction of the sciatic nerve in adult cats.Society for Neuroscience Abstracts 8, 859.

    Google Scholar 

  • Barron, K. D. (1983) Comparative observations on the cytologic reactions of central and peripheral nerve cells to axotomy. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. andReier, P. J.), pp. 7–40. New York: Raven Press.

    Google Scholar 

  • Barron, K. D., Dentinger, M. P., Nelson, L. R. &Sheibly, M. E. (1976) Incorporation of tritiated leucine by axotomized rubral neurons.Brain Research 116, 251–66.

    PubMed  Google Scholar 

  • Benowitz, L. I., Shashou, V. E. &Yoon, M. G. (1981) Specific changes in rapidly transported proteins during regeneration in the goldfish optic nerve.Journal of Neuroscience 1, 300–7.

    PubMed  Google Scholar 

  • Bisby, M. A.(1981) Axonal transport in the central axon of sensory neurons during regeneration of their peripheral axons.Neuroscience Letters 21, 7–11.

    PubMed  Google Scholar 

  • Bregman, B. S. (1983) Neural tissue transplants rescue rubrospinal neurons after neonatal spinal cord lesions.Society for Neuroscience Abstracts 9, 857.

    Google Scholar 

  • Cowhy, A. (1974) Atrophy of retinal ganglion cells after removal of striate cortex in a rhesus monkey.Perception 3, 257–60.

    PubMed  Google Scholar 

  • Cowey, A. &Perry, C. H. (1979) The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase.Experimental Brain Research 35, 457–64.

    Google Scholar 

  • Dineen, J. T. &Hendrickson, A. E. (1981) Age correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys.Investigative Ophthalmology and Visual Science 21, 749–52.

    PubMed  Google Scholar 

  • Eayrs, J. T. (1952) Relationship between ganglion cell layer of retina and optic nerve in the rat.British Journal of Ophthalmology 36, 453–9.

    PubMed  Google Scholar 

  • Forman, D. S. (1983) Axonal transport and nerve regeneration. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. andReier, P. J.), pp. 75–86. New York: Raven Press.

    Google Scholar 

  • Fukuda, Y., Sugimoto, T. &Shirokawa, T. (1982) Strain differences in quantitative analysis of the rat optic nerve.Experimental Neurology 75, 525–32.

    PubMed  Google Scholar 

  • Giulian, D., Des Ruisseaux, H. &Cowburn, D. (1980) Biosynthesis and intraxonal transport of protein during neuronal regeneration.Journal of Biological Chemistry 255, 6494–501.

    PubMed  Google Scholar 

  • Goldberg, S. &Frank, B. (1981) Retina as a model system in paraplegia research: pharmacologic studies.Experimental Neurology 73, 582–7.

    PubMed  Google Scholar 

  • Grafstein, B. &Forman, D. S. (1980) Intracellular transport in neurons.Physiological Reviews 60, 1168–283.

    Google Scholar 

  • Grafstein, B. &Ingoglia, N. A. (1982) Intracranial transection of the optic nerve in adult mice: preliminary observations.Experimental Neurology 76, 318–30.

    PubMed  Google Scholar 

  • Grafstein, B. &McQuarrie, I. G. (1978) The role of the nerve cell body in axonal regeneration. InNeuronal Plasticity (edited byCotman, C. W.), pp. 153–95. New York: Raven Press.

    Google Scholar 

  • Grafstein, B. &Murray, M. (1969) Transport of protein in goldfish optic nerve during regeneration.Experimental Neurology 25, 494–508.

    PubMed  Google Scholar 

  • Haun, F. &Cunningham, T. J. (1983) Specificity of neuronotrophic influence on target deprived neurons of the developing rat visual system.Society for Neuroscience Abstracts 9, 9.

    Google Scholar 

  • Heacock, A. M. &Agranoff, B. W. (1982) Protein synthesis and transport in the regenerating goldfish visual system.Neurochemistry Research 7, 771–88.

    Google Scholar 

  • Huffman, P. N. &Lasek, R. J. (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change.Brain Research 202, 317–33.

    PubMed  Google Scholar 

  • James, G. R. (1933) Degeneration of ganglion cells following axonal injury.Archives of Ophthalmology 9, 338–43.

    Google Scholar 

  • Jen, L. S. &Lund, R. D. (1981) Experimentally induced enlargement of the uncrossed retinotectal pathway in rats.Brain Research 211, 37–57.

    PubMed  Google Scholar 

  • Kristensson, K. &Olsson, Y. (1975) Retrograde transport of horseradish peroxidase in transected axons.Journal of Neurocytology 4, 653–61.

    PubMed  Google Scholar 

  • Lanners, H. N. &Grafstein, B. (1980) Early stages of axonal regeneration in the goldfish optic tract: an electron microscopic study.Journal of Neurocytology 9, 733–51.

    PubMed  Google Scholar 

  • Leinfelder, P. J. (1938) Retrograde degeneration in the optic nerves and retinal ganglion cells.Transactions of the American Ophthalmology Society 36, 307–15.

    Google Scholar 

  • Linden, R. &Perry, V. H. (1983) Massive retinotectal projection in rats.Brain Research 272, 145–9.

    PubMed  Google Scholar 

  • McConnell, P. &Berry, M. (1982) Regeneration of ganglion cell axons in the adult mouse retina.Brain Research 241, 362–5.

    PubMed  Google Scholar 

  • Mesulam, M. M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry.Journal of Histochemistry 26, 106–17.

    PubMed  Google Scholar 

  • Miller, N. M. &Oberdorfer, M. (1981) Neuronal and neuroglial responses following retinal lesions in the neonatal rats.Journal of Comparative Neurology 202, 493–504.

    PubMed  Google Scholar 

  • Misantone, L., Barron, K., Gershenbaum, M., Cipolla, V., Zanakis, M. &Murray, M. (1981) Effect of optic nerve crush on retinal ganglion cells in hooded rats.Society for Neuroscience Abstracts 7, 681.

    Google Scholar 

  • Muchnick, N. &Hibbard, E. (1980) Avian retinal ganglion cells resistant to degeneration after optic nerve lesion.Experimental Neurology 68, 205–16.

    PubMed  Google Scholar 

  • Murray, M. (1973)3H-Uridine incorporation by regenerating retinal ganglion cells in goldfish.Experimental Neurology 39, 489–92.

    PubMed  Google Scholar 

  • Murray, M. (1976) Regeneration of retinal axons into the goldfish optic tectum.Journal of Comparative Neurology 168, 175–96.

    PubMed  Google Scholar 

  • Murray, M. (1982) A quantitative study of regenerative sprouting by optic axons in goldfish.Journal of Comparative Neurology 209, 352–62.

    PubMed  Google Scholar 

  • Murray, M. &Edwards, M. A. (1982) A quantitative study of the innervation of the goldfish optic tectum following optic nerve crush.Journal of Comparative Neurology 208, 363–73.

    Google Scholar 

  • Murray, M. &Forman, D. S. (1971) Fine structural changes in goldfish retinal ganglion cells during axonal regeneration.Brain Research 32, 289–98.

    Google Scholar 

  • Murray, M. &Grafstein, B. (1969) Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons.Experimental Neurology 23, 544–68.

    PubMed  Google Scholar 

  • Murray, M., Sharma, S. &Edwards, M. A. (1982) Target regulation of synaptic number in the compressed retinotectal projection of goldfish.Journal of Comparative Neurology 209, 374–85.

    PubMed  Google Scholar 

  • Payne, B. R., Pearson, H. E. &Cornwell, P. (1984) Transneuronal degeneration of B retinal ganglion cells in the cat.Proceedings of the Royal Society B (in press).

  • Pearson, H. E., Labar, D. R., Payne, B. R., Cornwell, P. &Aggarwal, N. (1981) Transneuronal retrograde degeneration in the cat retina following neonatal ablation of visual cortex.Brain Research 212, 470–5.

    PubMed  Google Scholar 

  • Perry, V. H. &Cowey, A. (1979) The effects of unilateral cortical and tectal lesions on retinal ganglion cells in rats.Experimental Brain Research 35, 85–95.

    Google Scholar 

  • Polyak, S. L. (1958) Origin and course of the optic nerve. InThe Vertebrate Visual System (edited byKluver, H.), pp. 237–92. Chicago: University of Chicago Press.

    Google Scholar 

  • Potts, R. A., Dreher, B. &Bennet, M. R. (1982) The loss of ganglion cells in the developing retina of the rat.Developmental Brain Research 3, 81–6.

    Google Scholar 

  • Prendergast, J., Smiell, J. &Phillips, T. (1981) The development of the rubrospinal tract in the rat.Anatomical Record 202, 151A.

    Google Scholar 

  • Ramón Y Cajal, S. (1928)Degeneration and Regeneration of the Nervous System, Vol. 2. New York: Oxford University Press (translated R. M. May).

    Google Scholar 

  • Reier, P. J. &Webster, H. de F. (1974) Regeneration and remyelination ofXenopus tadpole optic nerve fibres following transection or crush.Journal of Neurocytology 3, 591–618.

    PubMed  Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Shemie, S. (1982) Regeneration and retrograde degeneration of axons in the rat optic nerve.Journal of Neurocytology 11, 949–66.

    PubMed  Google Scholar 

  • Skene, J. H. P. &Willard, M. (1981) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.Journal of Cell Biology 89, 96–103.

    PubMed  Google Scholar 

  • Stenevi, U. &Bjorklund, A. (1978) Transplantation techniques for the study of regeneration in the central nervous system.Progress in Brain Research 48, 101–12.

    PubMed  Google Scholar 

  • Tessler, A., Himes, B. T., Soper, K., Murray, M. &Goldberger, M. E. (1984) Recovery of substance P but not somatostatin in the cat spinal cord after unilateral lumbosacral dorsal rhizotomy.Brain Research (in press).

  • Tong, L., Spear, P. D., Kalil, R. E. &Callahan, E. C. (1982) Loss of retinal X-cells in cats with neonatal or adult visual cortex damage.Science 217, 72–5.

    PubMed  Google Scholar 

  • Weller, R. E., Kaas, J. H. &Wetzel, A. B. (1979) Evidence for the loss of X-cells in the retina after long term ablation of visual cortex in monkeys.Brain Research 160, 134–8.

    PubMed  Google Scholar 

  • Whitnall, M. H. &Grafstein, B. (1983) Changes in perikaryal organelles during axonal regeneration in goldfish retinal ganglion cells: an analysis of protein synthesis and routing.Brain Research 272, 49–56.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misantone, L.J., Gershenbaum, M. & Murray, M. Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol 13, 449–465 (1984). https://doi.org/10.1007/BF01148334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148334

Keywords

Navigation