Skip to main content
Log in

Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9

  • Brief Communication
  • Published:
Somatic Cell and Molecular Genetics

Abstract

Lactotransferrin (LTF), a member of the transferrin family of genes, is the major iron-binding protein in milk and body secretions. The amino acid sequence of LTF consists of two homologous domains homologous to proteins in the transferrin family. Recent isolation of cDNA encoding mouse LTF has expedited the mapping of both mouse and human LTF genes. Southern blot analysis of DNA from mouse-Chinese hamster and human-mouse somatic cell hybrids maps the LTF gene to mouse chromosome 9 and to human chromosome 3, respectively. Furthermore, analysis of cell hybrids containing defined segments of human chromosome 3 demonstrates that the gene is located in the 3q21-qter region. These results suggest that LTF and associated genes of the transferrin family have existed together on the same chromosomal region for 300–500 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Aisen, P., and Listowsky, I. (1980).Annu. Rev. Biochem. 49:357–393.

    PubMed  Google Scholar 

  2. MacGillivray, R.T.A., Mendez, E., Shewale, J.G., Sinha, S.K., Lineback-Zins, J., and Brew, K. (1983).J. Biol. Chem. 258:3543–3553.

    PubMed  Google Scholar 

  3. Ekblom, P., Thesleff, I., Saxen, L., Miettinen, A., and Timpl, R. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:2651–2655.

    PubMed  Google Scholar 

  4. Kan, M., and Yamane, I. (1984).In Vitro 20:89–94.

    PubMed  Google Scholar 

  5. Barnes, D., and Sato, G. (1980).Anal. Biochem. 102:255–270.

    PubMed  Google Scholar 

  6. Diamond, A., Cooper, G.M., Ritz, J., and Lane, M.A. (1983).Nature 305:112–116.

    PubMed  Google Scholar 

  7. Diamond, A., Devine, J.M., and Cooper, G.M. (1984).Science 225:516–519.

    PubMed  Google Scholar 

  8. Plowman, G.D., Brown, J.P., Enns, C.A., Schroder, J., Nikinman, B., Sussman, H.H., Hellström, K.E., and Hellström, I. (1983).Nature 303:70–72.

    PubMed  Google Scholar 

  9. Masson, P.L., and Heremans, J.F. (1966).Protides Biol. Fluids 14:115–124.

    Google Scholar 

  10. Segars, F.M., and Kinkade, J.M., Jr. (1977).J. Immunol. Methods 14:1–14.

    PubMed  Google Scholar 

  11. Arnold, R.R., Cole, M.F., and McGhee, J.R. (1977).Science 197:263–265.

    PubMed  Google Scholar 

  12. Pentecost, B.T., and Teng, C.T. (1987).J. Biol. Chem. 262:10134–10139.

    PubMed  Google Scholar 

  13. Teng, C.T., Walker, M.P., Bhattacharyya, S.N., Klapper, D.G., DiAugustine, R.P., and McLachlan, J.A. (1986).Biochem. J. 240:413–422.

    PubMed  Google Scholar 

  14. Yang, F., Lum, J.B., McGill, J.R., Moore, C.M., Naylor, S.L., van Braght, P.H., Baldwin, W.D., and Bowman, B.H. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:2752–2756.

    PubMed  Google Scholar 

  15. Szybalski, W.S., Szybalska, E.H., and Ragni, G. (1962).Natl. Cancer Inst. Monogr. 7:75–88.

    Google Scholar 

  16. Shows, T.B., Sakaguchi, A.Y., and Naylor, S.L. (1982).Adv. Human Genet. 12:341–452.

    Google Scholar 

  17. Naylor, S.L., Sakaguchi, A.Y., Szoka, P., Hendy, G.N., Kronenberg, H., Rich, A., and Shows, T.B. (1983).Somat. Cell Genet. 9:609–616.

    PubMed  Google Scholar 

  18. Minna, J.D., Marshall, T.H., and Shaffer-Berman, P.V. (1975).Cytogenet. Cell Genet. 1:355–369.

    Google Scholar 

  19. Francke, U., Lalley, P.A., Moss, W., Ivy, J., and Minna, J.D. (1977).Cytogenet. Cell Genet. 19:57–84.

    PubMed  Google Scholar 

  20. Lalley, P.A., Francke, U., and Minna, J.D. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:2383–2386.

    Google Scholar 

  21. Naylor, S.L., Sakaguchi, A.Y., Shows, T.B., Law, M.L., Goeddel, D.V., and Gray, P.W. (1983).J. Exp. Med. 157:1020–1027.

    PubMed  Google Scholar 

  22. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  23. Rigby, P.W.J., Dieckmann, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.

    PubMed  Google Scholar 

  24. Naylor, S.L., Elliot, R.W., Brown, J.A., and Shows, T.B. (1982).Am. J. Hum. Genet. 34:235–244.

    PubMed  Google Scholar 

  25. Naylor, S.L., and Sakaguchi, A.Y. (1986).Protides Biol. Fluids 33:71–76.

    Google Scholar 

  26. de Grouchy, J., Turleau, C., and Finaz, C. (1978).Annu. Rev. Genet. 17:289–328.

    Google Scholar 

  27. Yunis, J.J., and Prakash, O. (1982).Science 215:1525–1530.

    PubMed  Google Scholar 

  28. Williams, J. (1982).Trends Biochem. Sci. 7:394–397.

    Google Scholar 

  29. Rabin, M., McClelland, A., Kühn, L., and Ruddle, F.H. (1985).Am. J. Hum. Genet. 37:1112–1116.

    PubMed  Google Scholar 

  30. Seligman, P.A., Butler, C.D., Massey, E.J., Kaur, J.A., Brown, J.P., Plowman, G.D., Miller, Y., and Jones, C. (1986).Am. J. Hum. Genet. 38:540–548.

    PubMed  Google Scholar 

  31. McCombs, J.L., Teng, C.T., Pentecost, B.T., Magnuson, V.L., Moore, C.M., and McGill, J.R. (1987).Cytogenet. Cell Genet. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, C.T., Pentecost, B.T., Marshall, A. et al. Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. Somat Cell Mol Genet 13, 689–693 (1987). https://doi.org/10.1007/BF01534490

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534490

Keywords

Navigation