Skip to main content
Log in

Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10−3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10−3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 ] o . (8) Ouabain (10−4 m) caused a fast depolarization of −6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10−5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aickin, C.C., Thomas, R.C. 1976. Micro-electrode measurement of the intracellular pH and buffering capacity of mouse soleus muscle.J. Physiol. (London) 267:791–810

    Google Scholar 

  2. Aickin, C.C., Thomas, R.C. 1977. An investigation of the ionic mechanisms of intracellular pH regulation in mouse soleus muscle fibres.J. Physiol. (London) 273:295–316

    Google Scholar 

  3. Becker, B.F., Duhm, J. 1978. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.J. Physiol. (London) 282:149–168

    Google Scholar 

  4. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Na−H exchange.J. Gen. Physiol. 81:29–52

    PubMed  Google Scholar 

  5. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO 3 -transport.J. Gen. Physiol. 81:53–94

    PubMed  Google Scholar 

  6. Boron, W.F., De Weer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors.J. Gen. Physiol. 67:91–112

    PubMed  Google Scholar 

  7. Boron, W.F., McCormick, W.C., Roos, A. 1981. pH Regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate.Am. J. Physiol. 240:C80-C89

    PubMed  Google Scholar 

  8. Boron, W.F., Russel, J.M. 1983. Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons.J. Gen. Physiol. 81:373–399

    PubMed  Google Scholar 

  9. Duhm, J., Becker, B.F. 1977. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole.Pfluegers Arch. 367:211–219

    Google Scholar 

  10. Ehrlich, B.E., Diamond, J.M. 1980. Lithium, membranes, and manic-depressive illness. (Topical Review)J. Membrane Biol. 52:187–200

    Google Scholar 

  11. Fischbarg, J., Lim, J.J. 1974. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium.J. Physiol. (London) 241:647–675

    Google Scholar 

  12. Fischer, F., Voigt, G., Liegl, O., Wiederholt, M. 1974. Effect of pH on potential difference and short circuit current in the isolated human cornea.Pfluegers Arch. 349:119–131

    Google Scholar 

  13. Frömter, E., Gessner, K. 1975. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule.Pfluegers Arch. 357:209–224

    Google Scholar 

  14. Frömter, E., Sato, K. 1976. Electrical events in active H+/HCO 3 transport across rat kidney proximal tubular epithelium.In: Gastric Hydrogen Ion Secretion. D.K. Kasbekar, G. Sachs and W.S. Rehm, editors, pp. 382–403. Dekker, New York

    Google Scholar 

  15. Frömter, E., Ullrich, K.J. 1980. Effect of inhibitors and the mechanism of anion transport in the proximal renal tubule of rats.Ann. N.Y. Acad. Sci. 341:97–110

    PubMed  Google Scholar 

  16. Funder, F., Tosteson, D.C., Wieth, J.O. 1978. Effects of bicarbonate on lithium transport in human red cells.J. Gen. Physiol. 71:721–746

    PubMed  Google Scholar 

  17. Green, K., Simon, S., Kelly, G.M., Bowman, K.A. 1981. Effects of [Na+], [Cl], carbonic anhydrase, and intracellular pH on corneal endothelial bicarbonate transport.Invest. Ophthalmol. Vis. Sci. 21:586–591

    PubMed  Google Scholar 

  18. Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. 71:227–240

    Google Scholar 

  19. Hodson, S. 1974. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions.J. Physiol. (London) 236:271–302

    Google Scholar 

  20. Hodson, S., Miller, F. 1976. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea.J. Physiol. (London) 263:563–577

    Google Scholar 

  21. Hodson, S., Wigham, C., Williams, L., Mayes, K.R., Graham, M.V. 1981. Observations on the human corneain vitro.Exp. Eye Res. 32:353–360

    PubMed  Google Scholar 

  22. Huff, J.W., Green, K. 1981. Demonstration of active sodium transport across the isolated rabbit corneal endothelium.Curr. Eye Res. 1:113–114

    PubMed  Google Scholar 

  23. Huff, J.W., Green, K. 1982. Ion transport systems in the isolated rabbit corneal endothelium.Invest. Ophthalmol. Vis. Sci. 22(Suppl.):101 (Abstract)

    Google Scholar 

  24. Huff, W.J., Green, K. 1983. Characteristics of bicarbonate, sodium, and chloride fluxes in the rabbit corneal endothelium.Exp. Eye Res. 36:607–615

    PubMed  Google Scholar 

  25. Hull, D.S., Green, K., Boyd, M., Wynn, H.R. 1977. Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitors on endothelial permeability and fluxes and corneal thickness.Invest. Ophthalmol. Vis. Sci. 16:883–892

    PubMed  Google Scholar 

  26. Jentsch, T.J., Koch, M., Bleckmann, H., Wiederholt, M. 1983. The effect of bicarbonate on the intracellular potential of cultured bovine corneal endothelial cells.Naunyn-Schmiedebergs Arch. Pharmacol. 322:R10 (Abstract)

    Google Scholar 

  27. Jentsch, T.J., Koch, M., Bleckmann, H., Wiederholt, M. 1984. Effect of bicarbonate, pH, methazolamide and stilbenes on the intracellular potentials of cultured bovine corneal endothelial cells.J. Membrane Biol. 78:103–117

    Google Scholar 

  28. Jumblatt, M.M. 1981. Intracellular potentials of cultured rabbit corneal endothelial cells: Response to temperature and ouabain.Vision Res. 21:45–47

    PubMed  Google Scholar 

  29. Kelly, G., Green, K. 1980. Influence of bicarbonate and CO2 on rabbit corneal transendothelial bicarbonate fluxes.Exp. Eye Res. 30:641–648

    PubMed  Google Scholar 

  30. Laprade, R., Cardinal, J. 1983. Liquid junctions and isolated proximal tubule transepithelial potentials.Am. J. Physiol. 244:F304-F319

    PubMed  Google Scholar 

  31. Liebovitch, L.S., Fischbarg, J. 1982. Effects of inhibitors of passive Na+ and HCO 3 fluxes on electrical potential and fluid transport across rabbit corneal endothelium.Curr. Eye Res. 2:183–186

    PubMed  Google Scholar 

  32. Lim, J.J. 1981. Na+ transport across the rabbit corneal endothelium.Curr. Eye Res. 1:255–258

    PubMed  Google Scholar 

  33. Lim, J.J. 1982. Ion transport across the rabbit corneal endothelium.Invest. Ophthalmol. Vis. Sci. 22(Suppl.):101 (Abstract)

    Google Scholar 

  34. Lim, J.J., Fischbarg, J. 1979. Intra-cellular potential of rabbit corneal endothelial cells.Exp. Eye Res. 28:619–626

    PubMed  Google Scholar 

  35. Lim, J.J., Fischbarg, J. 1981. Electrical properties of rabbit corneal endothelium as determined from impedance measurements.Biophys. J. 36:677–695

    PubMed  Google Scholar 

  36. Lim, J.J., Liebovitch, L.S., Fischbarg, J. 1983. Ionic selectivity of the paracellular shunt across the rabbit corneal endothelium.J. Membrane Biol. 73:95–102

    Google Scholar 

  37. Lim, J.J., Ussing, H.H. 1982. Analysis of presteady-state Na+ fluxes across the rabbit corneal endothelium.J. Membrane Biol. 65:197–204

    Google Scholar 

  38. Lönnerholm, G. 1974. Carbonic anhydrase in the cornea.Acta Physiol. Scand. 90:143–152

    PubMed  Google Scholar 

  39. Lütjen-Drecoll, E., Lönnerholm, G. 1981. Carbonic anhydrase distribution in the rabbit eye by light and electron microscopy.Invest. Ophthalmol. Vis. Sci. 21:782–797

    PubMed  Google Scholar 

  40. Moody, W.J. 1981. The ionic mechanism of intracellular pH regulation in crayfish neurones.J. Physiol. (London) 316:293–308

    Google Scholar 

  41. Moolenaar, W.H., Boonstra, J., Saag, P.T. van der, Laat, S.W. de 1981. Sodium/proton exchange in mouse neuroblastoma cells.J. Biol. Chem. 256:12883–12887

    PubMed  Google Scholar 

  42. Paris, S., Pouysségur, J. 1983. Biochemical characterization of the amiloride-sensitive Na+/H+ antiport in Chinese hamster lung fibroblasts.J. Biol. Chem. 258:3503–3508

    PubMed  Google Scholar 

  43. Rindler, M.J., Saier, M.H. 1981. Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK).J. Biol. Chem. 256:10820–10825

    PubMed  Google Scholar 

  44. Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434

    PubMed  Google Scholar 

  45. Russel, J.M., Boron, W.F., Brodwick, M.S. 1983. Intracellular pH and Na fluxes in barnacle muscle with, evidence for reversal of the ionic mechanism of intracellular pH regulation.J. Gen. Physiol. 82:47–78

    PubMed  Google Scholar 

  46. Thomas, R.C. 1976. Ionic mechanism, of the H+ pump in a snail neurone.Nature (London) 262:54–55

    Google Scholar 

  47. Thomas, R.C. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones.J. Physiol. (London) 273:317–338

    Google Scholar 

  48. Ullrich, K.J., Capasso, G., Rumrich, G., Papavassiliou, F., Klöss, S. 1977. Coupling between proximal tubular transport processes. Studies with ouabain SITS and HCO 3 -free solutions.Pfluegers Arch. 368:245–252

    Google Scholar 

  49. Vaughan-Jones, R.D. 1979. Regulation of chloride, in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes.J. Physiol. (London) 295:111–137

    Google Scholar 

  50. Vaughan-Jones, R.D. 1982. Chloride-bicarbonate exchange in sheep cardiac Purkinje fibre.In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuticelli and D.W. Deamer, editors. pp. 239–252. A.R. Liss, New York

    Google Scholar 

  51. Wiederholt, M., Koch, M. 1978. Intracellular potentials of isolated rabbit and human corneal endothelium.Exp. Eye Res. 27:511–518

    PubMed  Google Scholar 

  52. Wigham, C., Hodson, S. 1981. The effect of bicarbonate ion concentration on trans-endothelial short circuit current in ox corneas.Curr. Eye Res. 1:37–41

    PubMed  Google Scholar 

  53. Wigham, C., Hodson, S. 1981. Bicarbonate and the transendothelial short circuit current of the human cornea.Curr. Eye Res. 1:285–290

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, T.J., Keller, S.K., Koch, M. et al. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. J. Membrain Biol. 81, 189–204 (1984). https://doi.org/10.1007/BF01868713

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868713

Key Words

Navigation