Skip to main content
Log in

The plasmin–antiplasmin system: structural and functional aspects

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The plasmin–antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and α2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and α2-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor α2-antiplasmin, the plasmin–antiplasmin system is also regulated by the general protease inhibitor α2-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A2PI:

α2-Antiplasmin, α2-Plasmin inhibitor

CHO:

Carbohydrate

EGF-like:

Epidermal growth factor-like

FN1:

Fibronectin type I

K:

Kringle

LBS:

Lysine binding site

LMW:

Low molecular weight

α2M:

α2-Macroglobulin

NTP:

N-terminal peptide of Pgn

PAI-1, -2:

Plasminogen activator inhibitor 1, 2

Pgn:

Plasminogen

Plm:

Plasmin

RCL:

Reactive centre loop

Serpin:

Serine protease inhibitor

tPA:

Tissue-type plasminogen activator

uPA:

Urokinase-type plasminogen activator

uPAR:

Urokinase-type plasminogen activator receptor

References

  1. Schaller J, Gerber S, Kämpfer U, Lejon S, Trachsel C (2008) Human blood plasma proteins: structure and function. Wiley, Chichester

    Book  Google Scholar 

  2. Gerber SS (2009) The human α2-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region. Inaugural dissertation, University of Bern, Switzerland

  3. Waisman DM (2003) Plasminogen: structure, activation, and regulation. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  4. Syrovets T, Simmet T (2004) Novel aspects and new roles of the serine protease plasmin. Cell Mol Life Sci 61:873–885

    Article  CAS  PubMed  Google Scholar 

  5. Myöhänen H, Vaheri A (2004) Regulation and interaction in the activation of cell-associated plasminogen. Cell Mol Life Sci 61:2840–2858

    Article  PubMed  CAS  Google Scholar 

  6. Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647–654

    CAS  PubMed  Google Scholar 

  7. Raum D, Marcus G, Alper CA, Levey R, Taylor PD, Starzl TE (1980) Synthesis of human plasminogen by the liver. Science 208:1036–1037

    Article  CAS  PubMed  Google Scholar 

  8. Forsgren M, Råden B, Israelsson M, Larsson K, Hedén LO (1987) Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213:254–260

    Article  CAS  PubMed  Google Scholar 

  9. Murray JC, Buetow KH, Donovan M, Hornung S, Motulsky AG, Disteche C, Dyer K, Swisshelm K, Anderson J, Giblett E, Sadler E, Eddy R, Shows TB (1987) Linkage disequilibrium of plasminogen polymorphisms and assignment of the gene to human chromosome 6q26–6q27. Am J Hum Genet 40:338–350

    CAS  PubMed  Google Scholar 

  10. Petersen TE, Martzen MR, Ichinose A, Davie EW (1990) Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem 265:6104–6111

    CAS  PubMed  Google Scholar 

  11. Ljinen HR, Hoylaerts M, Collen D (1980) Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. J Biol Chem 255:10214–10222

    Google Scholar 

  12. Jones AL, Hulett MD, Altin JG, Hogg P, Parish CR (2004) Plasminogen is tethered with high affinity to the cell surface by the plasma protein, histidine-rich glycoprotein. J Biol Chem 279:38267–38276

    Article  CAS  PubMed  Google Scholar 

  13. Tordai H, Bányai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461:63–67

    Article  CAS  PubMed  Google Scholar 

  14. Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S (1978) The primary structure of human plasminogen: isolation of two lysine-binding fragments and one ‘mini-’ plasminogen (MW 38,000) by elastase-catalyzed-specific limited proteolysis. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis, vol 3. Raven Press, New York, pp 191–209

    Google Scholar 

  15. Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665

    Article  CAS  PubMed  Google Scholar 

  16. Hayes ML, Castellino FJ (1979) Carbohydrate of the human plasminogen variants. I. Carbohydrate composition, glycopeptide isolation, and characterization. J Biol Chem 254:8768–8771

    CAS  PubMed  Google Scholar 

  17. Hayes ML, Castellino FJ (1979) Carbohydrate of the human plasminogen variants. II. Structure of the asparagine-linked oligosaccharide unit. J Biol Chem 254:8772–8776

    CAS  PubMed  Google Scholar 

  18. Hayes ML, Castellino FJ (1979) Carbohydrate of the human plasminogen variants. III. Structure of the O-glycosidically linked oligosaccharide unit. J Biol Chem 254:8777–8780

    CAS  PubMed  Google Scholar 

  19. Marti T, Schaller J, Rickli EE, Schmid K, Kamerling JP, Gerwig GJ, van Halbeek H, Vliegenthart JFG (1988) The N- and O-linked carbohydrate chains of human, bovine and porcine plasminogen. Species specificity in relation to sialylation and fucosylation patterns. Eur J Biochem 173:57–63

    Article  CAS  PubMed  Google Scholar 

  20. Pirie-Sheperd SR, Stevens RD, Andon NL, Enghild JJ, Pizzo SV (1997) Evidence for a novel O-linked sialylated trisaccharide on Ser-248 of human plasminogen 2. J Biol Chem 272:7408–7411

    Article  Google Scholar 

  21. Wang H, Prorok M, Bretthauer RK, Castellino FJ (1997) Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36:8100–8116

    Article  CAS  PubMed  Google Scholar 

  22. Violand BN, Castellino FJ (1976) Mechanism of the urokinase-catalyzed activation of human plasminogen. J Biol Chem 251:3906–3912

    CAS  PubMed  Google Scholar 

  23. Danø K, Andreasen PA, Grøndahl-Hansen J, Kristensen P, Nielsen LS, Skriver L (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    Article  PubMed  Google Scholar 

  24. Robbins KC, Summaria L, Hsieh B, Shah RJ (1967) The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 242:2333–2342

    CAS  PubMed  Google Scholar 

  25. Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC (2000) Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. J Mol Biol 295:903–914

    Article  CAS  PubMed  Google Scholar 

  26. Schick LA, Castellino FJ (1974) Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem Biophys Res Commun 57:47–54

    Article  CAS  PubMed  Google Scholar 

  27. Kowalska-Loth B, Zakrzewski K (1975) The activation by staphylokinase of human plasminogen. Acta Biochim Pol 22:327–339

    CAS  PubMed  Google Scholar 

  28. Ramesh V, Petros AM, Llinás M, Tulinsky A, Park CH (1987) Proton magnetic resonance study of lysine-binding to the kringle 4 domain of human plasminogen. The structure of the binding site. J Mol Biol 198:481–498

    Article  CAS  PubMed  Google Scholar 

  29. Mathews II, Vanderhoff-Hanavar P, Castellino FJ, Tulinsky A (1996) Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Biochemistry 35:2567–2576

    Article  CAS  PubMed  Google Scholar 

  30. Suenson E, Thorsen S (1981) Secondary-site binding of glu-plasmin, lys-plasmin and miniplasmin to fibrin. Biochem J 197:619–628

    CAS  PubMed  Google Scholar 

  31. Wiman B, Lijnen HR, Collen D (1979) On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen. Biochim Biophys Acta 579:142–154

    CAS  PubMed  Google Scholar 

  32. Frank PS, Douglas JT, Locher M, Llinás M, Schaller J (2003) Structural/functional characterization of the α2-plasmin inhibitor C-terminal peptide. Biochemistry 42:1078–1085

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Yu A, Wiman B, Pap S (2003) Identification of amino acids in antiplasmin involved in its noncovalent ‘lysine-binding-site’-dependent interaction with plasmin. Eur J Biochem 270:2023–2029

    Article  CAS  PubMed  Google Scholar 

  34. Ponting CP, Marshall JM, Cederhoilm Williams SA (1992) Plasminogen: a structural review. Blood Coagul Fibrinolysis 3:605–614

    Article  CAS  PubMed  Google Scholar 

  35. Berg A, Sjöbring U (1993) PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem 268:25417–25424

    Google Scholar 

  36. Carlsson Wistedt A, Kotarsky H, Marti D, Ringdahl U, Castellino FJ, Schaller J, Sjöbring U (1998) Kringle 2 mediates high affinity binding of plasminogen to an internal sequence in streptococcal surface protein PAM. J Biol Chem 273:24420–24424

    Article  Google Scholar 

  37. Miles LA, Dahlberg CM, Plow EF (1988) The cell binding domains of plasminogen and their function plasma. J Biol Chem 263:11928–11934

    CAS  PubMed  Google Scholar 

  38. Marti D, Schaller J, Ochensberger B, Rickli EE (1994) Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinities for ω-aminocarboxylic acids. Eur J Biochem 219:455–462

    Article  CAS  PubMed  Google Scholar 

  39. Söhndel S, Hu C-K, Marti D, Affolter M, Schaller J, Llinås M, Rickli EE (1996) Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. Biochemistry 35:2357–2364

    Article  PubMed  Google Scholar 

  40. Bürgin J, Schaller J (1999) Expression, isolation and characterization of a mutated human plasminogen kringle 3 with a functional lysine binding site. Cell Mol Life Sci 55:135–141

    Article  PubMed  Google Scholar 

  41. Marti DN, Hu C-K, An SSA, von Haller P, Schaller J, Llinás M (1997) Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Biochemistry 36:11591–11604

    Article  CAS  PubMed  Google Scholar 

  42. Marti DN, Schaller J, Llinás M (1999) Solution structure and dynamics of the plasminogen kringle-2-AMCHA complex: 3(1)-helix in homologous domains. Biochemistry 38:15741–15755

    Article  CAS  PubMed  Google Scholar 

  43. Chang Y, Mochalkin I, McCance SG, Chen B, Tulinsky A, Castellino FJ (1998) Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry 37:3258–3271

    Article  CAS  PubMed  Google Scholar 

  44. Gerber SS, Lejon S, Locher M, Schaller J (2010) The human α2-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region. Cell Mol Life Sci 67:1505–1518

    Article  CAS  PubMed  Google Scholar 

  45. Tranqui L, Prandini M-H, Chapel A (1979) The structure of plasminogen studied by electron microscopy. Biol Cellul 34:39–42

    CAS  Google Scholar 

  46. Weisel JW, Nagaswami C, Korsholm B, Petersen LC, Suenson E (1994) Interactions of plasminogen with polymerizing fibrin and its derivatives, monitored with a photoaffinity cross-linker and electron microscopy. J Mol Biol 235:1117–1135

    Article  CAS  PubMed  Google Scholar 

  47. Abad MC, Arni RK, Grella DK, Castellino FJ, Tulinsky A, Geiger JH (2002) The x-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol 318:1009–1017

    Article  CAS  PubMed  Google Scholar 

  48. Walker JB, Nesheim ME (1999) The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem 274:5201–5212

    Article  CAS  PubMed  Google Scholar 

  49. Mak TW, Rutledge G, Sutherland DJ (1976) Androgen-dependent fibrinolytic activity in a murine mammary carcinoma (Shionogi SC-115 cells) in vitro. Cell 7:223–226

    Article  CAS  PubMed  Google Scholar 

  50. Strickland S, Reich E, Sherman MI (1976) Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell 9:231–240

    Article  CAS  PubMed  Google Scholar 

  51. Gross JL, Moscatelli D, Rifkin DB (1983) Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci U S A 80:2623–2627

    Article  CAS  PubMed  Google Scholar 

  52. Ossowski L, Reich E (1983) Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35:611–619

    Article  CAS  PubMed  Google Scholar 

  53. Nielsen LS, Kellerman GM, Behrendt N, Picone R, Danø K, Blasi F (1988) A 55,000–60,000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem 263:2358–2363

    CAS  PubMed  Google Scholar 

  54. Schäfer BM, Maier K, Eickhoff U, Todd RF, Kramer MD (1994) Plasminogen activation in healing human wounds. Am J Pathol 144:1269–1280

    PubMed  Google Scholar 

  55. Netzel-Arnett S, Mitola DJ, Yamada SS, Chrysovergis K, Holmbeck K, Birkedal-Hansen H, Bugge TH (2002) Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J Biol Chem 277:45154–45161

    Article  CAS  PubMed  Google Scholar 

  56. Bonnefoy A, Legrand C (2000) Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 98:323–332

    Article  CAS  PubMed  Google Scholar 

  57. Nakagami Y, Abe K, Nishiyama N, Matsuki N (2000) Laminin degradation by plasmin regulates long-term potentiation. J Neurosci 20:2003–2010

    CAS  PubMed  Google Scholar 

  58. Zeibdawi AR, Pryzdial EL (2001) Mechanism of factor Va inactivation by plasmin. Loss of A2 and A3 domains from a Ca2+-dependent complex of fragments bound to phospholipid. J Biol Chem 276:19929–19936

    Article  CAS  PubMed  Google Scholar 

  59. Hamilton KK, Fretto LJ, Grierson DS, McKee PA (1985) Effects of plasmin on von Willebrand factor multimers. Degradation in vitro and stimulation of release in vivo. J Clin Invest 76:261–270

    Article  CAS  PubMed  Google Scholar 

  60. Seligsohn U, Lubetsky A (2001) Genetic susceptibility to venous thrombosis. New Engl J Med 344:1222–1231

    Article  CAS  PubMed  Google Scholar 

  61. Ichinose A, Espling ES, Takamatsu J, Saito H, Shinmyozu K, Maruyama I, Petersen TE, Davie EW (1991) Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A 88:115–119

    Article  CAS  PubMed  Google Scholar 

  62. Schuster V, Seregard S (2003) Ligneous conjunctivitis. Surv Ophthalmol 48:369–388

    Article  PubMed  Google Scholar 

  63. Levin EG (1983) Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci U S A 80:6804–6808

    Article  CAS  PubMed  Google Scholar 

  64. Sappino A-P, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli J-D (1993) Extracellular proteolysis in the adult murine brain. J Clin Invest 92:679–685

    Article  CAS  PubMed  Google Scholar 

  65. Pfeiffer G, Schmidt M, Strube K-H, Geyer R (1989) Carbohydrate structure of recombinant human uterine tissue plasminogen activator expressed in mouse epithelial cells. Eur J Biochem 186:273–286

    Article  CAS  PubMed  Google Scholar 

  66. Harris RJ, Leonard CK, Guzzetta AW, Spellman MW (1991) Tissue plasminogen activator has an O-linked fucose attached to threoine-61 in the epidermal growth factor domain. Biochemistry 30:2311–2314

    Article  CAS  PubMed  Google Scholar 

  67. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221

    Article  CAS  PubMed  Google Scholar 

  68. Ny T, Elgh F, Lund B (1984) The structure of the human tissue-type plasminogen activator gene: correlation of introns and exon structures to functional and structural domains. Proc Natl Acad Sci U S A 81:5355–5359

    Article  CAS  PubMed  Google Scholar 

  69. Fisher R, Waller EK, Grossi G, Thompson D, Tizard R, Schleuning W-D (1985) Isolation and characterization of the human tissue-type plasminogen activator structural gene including its 5’ flanking region. J Biol Chem 260:11223–11230

    CAS  PubMed  Google Scholar 

  70. Loscalzo J (1988) Structural and kinetic comparison of recombinant human single- and two-chain tissue plasminogen activator. J Clin Invest 82:1391–1397

    Article  CAS  PubMed  Google Scholar 

  71. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    CAS  PubMed  Google Scholar 

  72. Byeon IJ, Llinás M (1991) Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid, an antifibrinolytic drug. J Mol Biol 222:1035–1051

    Article  CAS  PubMed  Google Scholar 

  73. de Vos AM, Ultsch MH, Kelley RF, Padmanabhan K, Tulinsky A, Westbrook ML, Kossiakoff AA (1992) Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2.4 Å resolution. Biochemistry 31:270–279

    Article  PubMed  Google Scholar 

  74. Smith BO, Downing AK, Driscoll PC, Dudgeon TJ, Campbell ID (1995) The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. Structure 3:823–833

    Article  CAS  PubMed  Google Scholar 

  75. Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJ, Presta L, Wurm FM, Zoller MJ (1991) High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266:5191–5201

    CAS  PubMed  Google Scholar 

  76. de Vries C, Vaerman H, Pannekoeck H (1989) Identification of the domains of tissue-type plasminogen activator involved in the augmented binding to fibrin after limited digestion with plasmin. J Biol Chem 264:12604–12610

    PubMed  Google Scholar 

  77. Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919

    CAS  PubMed  Google Scholar 

  78. Lamba D, Bauer M, Huber R, Fischer S, Rudolph R, Kohnert U, Bode W (1996) The 2.3 Å crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol 258:117–135

    Article  CAS  PubMed  Google Scholar 

  79. Renatus M, Engh RA, Stubbs MT, Huber R, Fischer S, Kohnert U, Bode W (1997) Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA. EMBO J 16:4797–4805

    Article  CAS  PubMed  Google Scholar 

  80. Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator I. Identity with annexin II. J Biol Chem 269:21191–21197

    CAS  PubMed  Google Scholar 

  81. Cesarman GM, Guevara CA, Hajjar KA (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA) II. Annexin-II mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 269:21198–21203

    CAS  PubMed  Google Scholar 

  82. Hunt BJ, Segal H (1996) Hyperfibrinolysis. J Clin Pathol 49:958

    Article  CAS  PubMed  Google Scholar 

  83. Bernik MB, Kwaan HC (1969) Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest 48:1740–1753

    Article  CAS  PubMed  Google Scholar 

  84. Duffy MJ (1990) Plasminogen activators and cancer. Blood Coagul Fibrinolysis 1:681–687

    CAS  PubMed  Google Scholar 

  85. Nielsen LS, Hansen JG, Skriver L, Wilson EL, Kaltoft K, Zeuthen J, Danø K (1982) Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry 21:6410–6415

    Article  CAS  PubMed  Google Scholar 

  86. Wun TC, Ossowski L, Reich E (1982) A proenzyme form of human urokinase. J Biol Chem 257:7262–7268

    CAS  PubMed  Google Scholar 

  87. Buko AM, Kentzer EJ, Petros A, Menon G, Zuiderweg ERP, Sarin VK (1991) Characterization of posttranslational fucosylation in the growth factor domain of urinary plasminogen activator. Proc Natl Acad Sci U S A 88:3992–3996

    Article  CAS  PubMed  Google Scholar 

  88. Franco P, Iaccarino C, Chiaradonna F, Brandazza A, Iavarone C, Mastronicola MR, Nolli ML, Stoppelli MP (1997) Phosphorylation of human pro-urokinase on Ser138/303 impairs its receptor-dependent ability to promote myelomonocytic adherence and motility. J Cell Biol 137:779–791

    Article  CAS  PubMed  Google Scholar 

  89. Riccio A, Grimaldi G, Verde P, Sebastio G, Boast S, Blasi F (1985) The human urokinase-plasminogen activator gene and its promotor. Nucleic Acids Res 13:2759–2771

    Article  CAS  PubMed  Google Scholar 

  90. Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Günzler WA, Jänicke F, Graeff H (1991) Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J Biol Chem 266:5147–5152

    CAS  PubMed  Google Scholar 

  91. Steffens GJ, Günzler WA, Otting F, Frankus E, Flohe L (1982) The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z Physiol Chem 363:1043–1058

    CAS  PubMed  Google Scholar 

  92. Hansen AP, Petros AM, Meadows RP, Nettesheim DG, Mazar AP, Olejniczak ET, Xu RX, Pederson TM, Henkin J, Fesik SW (1994) Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry 33:4847–4864

    Article  CAS  PubMed  Google Scholar 

  93. Stephens RW, Bokman AM, Myohanen HT, Reisberg T, Tapiovaara H, Pedersen N, Grøndahl-Hansen J, Llinás M, Vaheri A (1992) Heparin binding to the urokinase kringle domain. Biochemistry 31:7572–7579

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Bokman AM, Llinás M, Smith RA, Dobson CM (1994) Solution structure of the kringle domain from urokinase-type plasminogen activator. J Mol Biol 235:1548–1559

    Article  CAS  PubMed  Google Scholar 

  95. Appella E, Robinson EA, Ulrich SJ, Stoppelli MP, Corti A, Cassani G, Blasi F (1987) The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 262:4437–4440

    CAS  PubMed  Google Scholar 

  96. Ploug M, Rahbek-Nielsen H, Ellis V, Roepstorff P, Danø K (1995) Chemical modification of the urokinase-type plasminogen activator and its receptor using tetranitromethane. Evidence for the involvement of specific tyrosine residues in both molecules during receptor-ligand interaction. Biochemistry 34:12524–12534

    Article  CAS  PubMed  Google Scholar 

  97. Katz BA, Sprengeler PA, Luong C, Verner E, Elrod K, Kritley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, McGee D, Allen D, Martelli A, Mackman RL (2001) Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem Biol 8:1107–1121

    Article  CAS  PubMed  Google Scholar 

  98. Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22

    Article  CAS  PubMed  Google Scholar 

  99. Janciauskiene S (2001) Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 1535:221–235

    CAS  PubMed  Google Scholar 

  100. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PGW, Irving IA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296

    Article  CAS  PubMed  Google Scholar 

  101. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216–226

    Article  PubMed  CAS  Google Scholar 

  102. Gettins PG, Olson ST (2009) Exosite determinants of serpin specificity. J Biol Chem 284:20441–20445

    Article  CAS  PubMed  Google Scholar 

  103. Irving JA, Pike RN, Lesk AM, Whisstock JC (2000) Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10:845–864

    Article  Google Scholar 

  104. van Gent D, Sharp P, Morgan K, Kalsheker N (2003) Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 35:1536–1547

    Article  PubMed  CAS  Google Scholar 

  105. Gettins PG (2000) Keeping the serpin machine running smoothly. Genome Res 10:1833–1835

    Article  CAS  PubMed  Google Scholar 

  106. Coughlin PB (2005) Antiplasmin: the forgotten serpin? FEBS J 272:4852–4857

    Article  CAS  PubMed  Google Scholar 

  107. Favier R, Aoki N, de Moerloose P (2001) Congenital α2-plasmin inhibitor deficiencies: a review. Br J Haematol 114:4–10

    Article  CAS  PubMed  Google Scholar 

  108. Saito H, Goodnough LT, Knowles BB, Aden DP (1982) Synthesis and secretion of α2-plasmin inhibitor by established human liver cell lines. Proc Natl Acad Sci U S A 79:5684–5687

    Article  CAS  PubMed  Google Scholar 

  109. Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N (1989) Expression and characterization of pro α2-plasmin inhibitor. J Biochem 106:703–707

    CAS  PubMed  Google Scholar 

  110. Ries M, Easton RL, Longstaff C, Zenker M, Morris HR, Dell A, Gaffney PJ (2002) Differences between neonates and adults in carbohydrate sequences and reaction kinetics of plasmin and α2-antiplasmin. Thromb Res 105:247–256

    Article  CAS  PubMed  Google Scholar 

  111. Locher M (2004) Strukturelle und funktionelle Untersuchungen am α2-Plasmininhibitor. Inaugural dissertation, University of Bern, Switzerland

  112. Christensen S, Valnickova Z, Thøgersen IB, Olsen EH, Enghild JJ (1997) Assignment of a single disulphide bridge in human alpha2-antiplasmin: implications for the structural and functional properties. Biochem J 323:847–852

    CAS  PubMed  Google Scholar 

  113. Hortin G, Fok KF, Toren PC, Strauss AW (1987) Sulfation of a tyrosine residue in the plasmin-binding domain of α2-antiplasmin. J Biol Chem 262:3082–3085

    CAS  PubMed  Google Scholar 

  114. Hirosawa S, Nakamura Y, Miura O, Sumi Y, Aoki N (1988) Organization of the human alpha 2-plasmin inhibitor gene. Proc Natl Acad Sci U S A 85:6836–6840

    Article  CAS  PubMed  Google Scholar 

  115. Koyama T, Koike Y, Toyota S, Miyagi F, Suzuki N, Aoki N (1994) Different NH2-terminal form with 12 additional residues of α2-plasmin inhibitor from human plasma and culture media of Hep G2 cells. Biochem Biophys Res Commun 200:417–422

    Article  CAS  PubMed  Google Scholar 

  116. Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA (2004) A novel plasma proteinase potentiates α2-antiplasmin inhibition of fibrin digestion. Blood 103:3783–3788

    Article  CAS  PubMed  Google Scholar 

  117. Sasaki T, Morita T, Iwanaga S (1986) Identification of the plasminogen-binding site of human alpha 2-plasmin inhibitor. J Biochem 99:1699–1705

    CAS  PubMed  Google Scholar 

  118. Clemmensen I, Thorsen S, Müllertz S, Petersen LC (1981) Properties of three different molecular forms of the α2plasmin inhibitor. Eur J Biochem 120:105–112

    Article  CAS  PubMed  Google Scholar 

  119. Kluft C, Los P, Jie AF, van Hinsbergh VW, Vellenga E, Jespersen J, Henny CP (1986) The mutual relationship between the two molecular forms of the major fibrinolysis inhibitor alpha-2-antiplasmin in blood. Blood 67:616–622

    CAS  PubMed  Google Scholar 

  120. Holmes WE, Nelles L, Lijnen HR, Collen D (1987) Primary structure of human α2-antiplasmin, a serine protease inhibitor (serpin). J Biol Chem 262:1659–1664

    CAS  PubMed  Google Scholar 

  121. Law RH, Sofian T, Kan WT, Horvath AJ, Hitchen CR, Langendorf CG, Buckle AM, Whisstock JC, Coughlin PB (2008) X-ray crystal structure of the fibrinolysis inhibitor alpha2-antiplasmin. Blood 111:2049–2052

    Article  CAS  PubMed  Google Scholar 

  122. Sakata Y, Aoki N (1982) Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 69:536–542

    Article  CAS  PubMed  Google Scholar 

  123. Kimura S, Aoki N (1986) Cross-linking site in fibrinogen for α2-plasmin inhibitor. J Biol Chem 261:15591–15595

    CAS  PubMed  Google Scholar 

  124. Wang H, Karlsson A, Sjöström I, Wiman B (2006) The interaction between plasminogen and antiplasmin variants as studied by surface plasmon resonance. Biochim Biophys Acta 1764:1730–1734

    CAS  PubMed  Google Scholar 

  125. Christensen U, Clemmensen I (1977) Kinetic properties of the primary inhibitor of plasmin from human plasma. Biochem J 163:389–391

    CAS  PubMed  Google Scholar 

  126. Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 84:573–578

    Article  CAS  PubMed  Google Scholar 

  127. Wiman B, Collen D (1979) On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J Biol Chem 254:9291–9297

    CAS  PubMed  Google Scholar 

  128. Wiman B, Boman L, Collen D (1978) On the kinetics of the reaction between human antiplasmin and a low-molecular-weight form of plasmin. Eur J Biochem 87:143–146

    Article  CAS  PubMed  Google Scholar 

  129. Potempa J, Shieh B-H, Travis J (1988) Alpha-2-antiplasmin: a serpin with two separate but overlapping reactive sites. Science 241:699–700

    Article  CAS  PubMed  Google Scholar 

  130. Miura O, Hirosawa S, Kato A, Aoki N (1989) Molecular basis for congenital deficiency of alpha-2-plasmin inhibitor: a frameshift mutation leading to elongation of the deduced amino acid sequence. J Clin Invest 83:1598–1604

    Article  CAS  PubMed  Google Scholar 

  131. Lind B, Thorsen S (1999) A novel missense mutation in the human plasmin inhibitor (alpha-2-antiplasmin) gene associated with a bleeding tendency. Br J Haematol 107:317–322

    Article  CAS  PubMed  Google Scholar 

  132. Sottrup-Jensen L (1989) α-Macroglobulins: structure, shape, and mechanisms of proteinase complex formation. J Biol Chem 264:11539–11542

    CAS  PubMed  Google Scholar 

  133. Borth W (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6:3345–3353

    CAS  PubMed  Google Scholar 

  134. Matthijs G, Devriendt K, Cassiman J-J, van den Berghe H, Marynen P (1992) Structure of the human alpha-2-macroglobulin gene and its promotor. Biochem Biophys Res Commun 184:596–603

    Article  CAS  PubMed  Google Scholar 

  135. Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lønblad PB, Magnusson S, Petersen TE (1984) Primary structure of human alpha-2-macroglobulin V. The complete structure. J Biol Chem 259:8318–8327

    CAS  PubMed  Google Scholar 

  136. Jensen PE, Sottrup-Jensen L (1986) Primary structure of human alpha-2-macroglobulin. Complete disulfide bridge assignment and localization of two interchain bridges in the dimeric proteinase binding unit. J Biol Chem 261:15863–15869

    CAS  PubMed  Google Scholar 

  137. Sottrup-Jensen L, Lønblad PB, Stepanik TM, Petersen TE, Magnusson S, Jörnvall H (1981) Primary structure of the ‘bait’ region for proteinases in α2-macroglobulin. FEBS Lett 127:167–173

    Article  CAS  PubMed  Google Scholar 

  138. Steiner JP, Migliorini M, Strickland DK (1987) Characterization of the reaction of plasmin with α2-macroglobulin: Effect of antifibrinolytic agents. Biochemistry 26:8487–8495

    Article  CAS  PubMed  Google Scholar 

  139. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RCP, Perry R, Watson B Jr, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19:357–360

    Article  CAS  PubMed  Google Scholar 

  140. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I (1997) Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46:860–867

    Article  CAS  PubMed  Google Scholar 

  141. Pannekoek H, Veerman H, Lambers H, Diergaarde P, Verweij CL, van Zonneveld AJ, van Mourik JA (1986) Endothelial plasminogen activator inhibitor (PAI): a new member of the serpin gene family. EMBO J 5:2539–2544

    CAS  PubMed  Google Scholar 

  142. Loskutoff DJ, Linders M, Keijer J, Veerman H, van Heerikhuizen H, Pannekoek H (1987) Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution of introns. Biochemistry 26:3763–3768

    Article  CAS  PubMed  Google Scholar 

  143. Andreasen PA, Riccio A, Welinder KG, Douglas R, Sartorio R, Nielsen LS, Oppenheimer C, Blasi F, Danø K (1986) Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing. FEBS Lett 209:213–218

    Article  CAS  PubMed  Google Scholar 

  144. Xue Y, Bjorquist P, Inghardt T, Linschoten M, Musil D, Sjolin L, Deinum J (1998) Interfering with the inhibitory mechanism of serpin: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 6:627–636

    Article  CAS  PubMed  Google Scholar 

  145. Alessi MC, Declerck PJ, De Mol M, Nelles L, Collen D (1988) Purification and characterization of natural and recombinant human plasminogen activator inhibitor-1 (PAI-1). Eur J Biochem 175:531–540

    Article  CAS  PubMed  Google Scholar 

  146. Lawrence D, Strandberg L, Grundstrom T, Ny T (1989) Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eukaryotic cells. Eur J Biochem 186:523–533

    Article  CAS  PubMed  Google Scholar 

  147. Keijer J, Linders M, Wegman JJ, Ehrlich HJ, Mertens K, Pannekoek H (1991) On the target specificity of plasminogen activator inhibitor 1: the role of heparin, vitronectin, and the reactive site. Blood 78:1254–1261

    CAS  PubMed  Google Scholar 

  148. Heckman CM, Loskutoff DJ (1988) Bovine plasminogen activator inhibitor 1: specificity determinations and comparison of the active, latent, and guanidine-activated forms. Biochemistry 27:2911–2918

    Article  Google Scholar 

  149. Sigurdardottir O, Wiman B (1994) Identification of a PAI-1 binding site in vitronectin. Biochim Biophys Acta 1208:104–110

    Article  CAS  PubMed  Google Scholar 

  150. Ehrlich AJ, Gebbbink RK, keijer J, Linders M, Preissner KT, Pannekoek H (1990) Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 265:13029–13035

    CAS  PubMed  Google Scholar 

  151. Erickson LA, Ginsberg MH, Loskutoff DJ (1984) Detection and partial characterization of an inhibitor of plasminogen activator in human platelets. J Clin Invest 74:1465–1472

    Article  CAS  PubMed  Google Scholar 

  152. Juhan Vague I, Moerman B, De Cock F, Aillaud MF, Collen D (1984) Plasma levels of a specific inhibitor of tissue-type plasminogen activator (and urokinase) in normal and pathological conditions. Thromb Res 33:523–530

    Article  CAS  PubMed  Google Scholar 

  153. Fay WP, Parker AC, Condrey LR, Shapiro AD (1997) Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood 90:204–208

    CAS  PubMed  Google Scholar 

  154. Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9

    Article  CAS  PubMed  Google Scholar 

  155. Medcalf RL, Stasinopoulos SJ (2005) The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. FEBS J 272:4858–4867

    Article  CAS  PubMed  Google Scholar 

  156. Kruithof EKO, Baker MS, Bunn CL (1995) Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood 86:4007–4024

    CAS  PubMed  Google Scholar 

  157. Lecander I, Astedt B (1986) Isolation of a new specific plasminogen activator inhibitor from pregnancy plasma. Br J Haematol 62:221–228

    Article  CAS  PubMed  Google Scholar 

  158. Kruithof EK, Vassalli JD, Schleuning WD, Mattaliano RJ, Bachmann F (1986) Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937. J Biol Chem 261:11207–11213

    CAS  PubMed  Google Scholar 

  159. Schleuning WD, Medcalf RL, Hession C, Rothenbühler R, Shaw A, Kruithof EK (1987) Plasminogen activator inhibitor 2: regulation of gene transcription during phorbol ester-mediated differentiation of U-937 human histiocytic lymphoma cells. Mol Cell Biol 7:4564–4567

    CAS  PubMed  Google Scholar 

  160. Webb AC, Collins KL, Snyder SE, Alexander SJ, Rosenwasser LJ, Eddy RL, Shows TB, Auron PE (1987) Human monocyte Arg-Serpin cDNA. Sequence, chromosomal assignment, and homology to plasminogen activator-inhibitor. J Exp Med 166:77–94

    Article  CAS  PubMed  Google Scholar 

  161. Wohlwend A, Belin D, Vassalli JD (1987) Plasminogen activator-specific inhibitors produced by human monocytes/macrophages. J Exp Med 165:320–339

    Article  CAS  PubMed  Google Scholar 

  162. Dougherty KM, Pearson JM, Yang AY, Westrick RJ, Baker MS, Ginsburg D (1999) The plasminogen activator inhibitor-2 gene is not required for normal murine development or survival. Proc Natl Acad Sci U S A 96:686–691

    Article  CAS  PubMed  Google Scholar 

  163. von Heijne G, Liljestrom P, Mikus P, Andersson H, Ny T (1991) The efficiency of the uncleaved secretion signal in the plasminogen activator inhibitor type 2 protein can be enhanced by point mutations that increase its hydrophobicity. J Biol Chem 266:15240–15243

    Google Scholar 

  164. Genton C, Kruithof EK, Schleuning WD (1987) Phorbol ester induces the biosynthesis of glycosylated and non-glycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells. J Cell Biol 104:705–712

    Article  CAS  PubMed  Google Scholar 

  165. Belin D, Wohlwend A, Schleuning WD, Kruithof EK, Vassalli JD (1988) Facultative polypeptide translocation allows a single mRNA to encode the secreted and cytosolic forms of plasminogen activators inhibitor 2. EMBO J 8:3287–3294

    Google Scholar 

  166. Ye RD, Ahern SM, le Beau MM, Lebo RV, Sadler JE (1989) Structure of the gene for human plasminogen activator inhibitor-2. The nearest mammalian homologue of chicken ovalbumin. J Biol Chem 264:5495–5502

    CAS  PubMed  Google Scholar 

  167. Samia JA, Alexander SJ, Horton KW, Auron PE, Byers MG, Shows TB Jr, Webb AC (1990) Chromosomal organization and localization of the human urokinase inhibitor gene: perfect structural conservation with ovalbumin. Genomics 6:159–167

    Article  CAS  PubMed  Google Scholar 

  168. Ye RD, Wun T-Z, Sadler JE (1987) cDNA cloning and expression in Escherichia coli of a plasminogen activator inhibitor from human placenta. J Biol Chem 262:3718–3725

    CAS  PubMed  Google Scholar 

  169. Jensen PH, Schuler E, Woodrow G, Richardson M, Goss N, Hojrup P, Petersen TE, Rasmussen LK (1994) A unique interhelical insertion in plasminogen activator inhibitor-2 contains three glutamines, Gln83, Gln84, Gln86, essential for transglutaminase-mediated cross-linking. J Biol Chem 269:1594–1598

    Google Scholar 

  170. Ritchie H, Lawrie LC, Crombie PW, Mosesson MW, Booth NA (2000) Cross-linking of plasminogen activator inhibitor 2 and alpha(2)-antiplasmin to fibrin(ogen). J Biol Chem 275:24915–24920

    Article  CAS  PubMed  Google Scholar 

  171. Harrop SJ, Jankova L, Coles M, Jardine D, Whittaker JS, Gould AR, Meister A, Kung GC, Mabbutt BC, Curmi PM (1999) The crystal structure of plasminogen activator 2 at 2.0 Å resolution: implications for serpin function. Structure 7:43–54

    Article  CAS  PubMed  Google Scholar 

  172. Mikus P, Urano T, Liljestrom P, Ny T (1993) Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerizing SERPIN. Biochemical characterisation of the recombinant intracellular and extracellular forms. Eur J Biochem 218:1071–1082

    Article  CAS  PubMed  Google Scholar 

  173. Miranda E, Lomas DA (2006) Neuroserpin: a serpin to think about. Cell Mol Life Sci 63:709–722

    Article  CAS  PubMed  Google Scholar 

  174. Galliciotti G, Sonderegger P (2006) Neuroserpin. Front Biosci 1:33–45

    Article  Google Scholar 

  175. Yepes M, Lawrence DA (2004) Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system. Thromb Haemost 91:457–464

    CAS  PubMed  Google Scholar 

  176. Hastings GA, Coleman TA, Haudenschild CC, Stefansson S, Smith EP, Barthlow R, Cherry S, Sandkvist M, Lawerence DA (1997) Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. J Biol Chem 272:33062–33067

    Article  CAS  PubMed  Google Scholar 

  177. Schrimpf SP, Bleiker AJ, Brecevic L, Kozlov SV, Berger P, Osterwalder T, Krueger SR, Schinzel A, Sonderegger P (1997) Human neuroserpin (P12): cDNA cloning and chromosomal localization to 3q26. Genomics 40:55–62

    Article  CAS  PubMed  Google Scholar 

  178. Osterwalder T, Contartese J, Stoeckli ET, Kuhn TB, Sonderegger P (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944–2953

    CAS  PubMed  Google Scholar 

  179. Yazaki M, Liepnieks JJ, Murrell JR, Takao M, Guenther B, Piccardo P, Farlow MR, Ghetti B, Benson MD (2001) Biochemical characterization of a neuroserpin variant associated with hereditary dementia. Am J Pathol 158:227–233

    Article  CAS  PubMed  Google Scholar 

  180. Ricagno S, Caccia S, Sorrentino G, Antonini G, Bolognesi M (2009) Human neuroserpin: structure and time-dependent inhibition. J Mol Biol 388:109–121

    Article  CAS  PubMed  Google Scholar 

  181. Osterwalder T, Cinelli P, Baici A, Pennella A, Krueger SR, Schrimpf SP, Meins M, Sonderegger P (1998) The axonally secreted serine protease inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin. J Biol Chem 273:2312–2321

    Article  CAS  PubMed  Google Scholar 

  182. Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu P, Elliott PR, Finch JT, Carrell RW, Lomas DA (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401:376–379

    CAS  PubMed  Google Scholar 

  183. Eaton DL, Baker JB (1983) Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor. J Cell Physiol 117:175–182

    Article  CAS  PubMed  Google Scholar 

  184. Scott RW, Bergman BL, Bajpai A, Hersh RT, Rodriguez H, Jones BN, Barreda C, Watts S, Baker JB (1985) Protease nexin. Properties and a modified purification procedure. J Biol Chem 260:7029–7034

    CAS  PubMed  Google Scholar 

  185. Nick H, Hofsteenge J, Shaw E, Rovelli G, Monard D (1990) Functional sites of glia-derived nexin (GDN): importance of the site reacting with the protease. Biochemistry 29:2417–2421

    Article  CAS  PubMed  Google Scholar 

  186. Carter RE, Cerosaletti KM, Burkin DJ, Fournier REK, Jones C, Greenberg BD, Citron BA, Festoff BW (1995) The gene for the serpin thrombin inhibitor (P17), protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the mouse and sheep genomes. Genomics 27:196–199

    Article  CAS  PubMed  Google Scholar 

  187. DeMeo DL, Mariani TJ, Lange C, Srisuma S, Litonjua AA, Celedon JC, lake SL, Reilly JJ, Chapman HA, Mecham BH, Haley KJ, Sylvia JS, Sparrow D, Spira AE, Beane J, Pinto-Plata V, Speizer FE, Shapiro SD, Weiss S, Silverman EK (2006) The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet 78:253–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Schaller.

Additional information

The recommended names in the UniProt Knowledgebase (SwissProt and TrEMBL) were used. The protein structures are based on the coordinates deposited in the Protein Data Bank (PDB) and were visualized as well as rendered using the software PyMOL. If not stated otherwise, the standard rainbow colour representation was used.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, J., Gerber, S.S. The plasmin–antiplasmin system: structural and functional aspects. Cell. Mol. Life Sci. 68, 785–801 (2011). https://doi.org/10.1007/s00018-010-0566-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0566-5

Keywords

Navigation