Skip to main content

Advertisement

Log in

Retinal replacement—the development of microelectronic retinal prostheses—experience with subretinal implants and new aspects

  • Review
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Progress in the field of microelectronics has led to the development of visual prostheses for the treatment of blinding diseases. Different concepts of retinal replacement are currently under investigation. The aim of the retinal prostheses is to replace the function of lost photoreceptors in degenerative diseases, such as retinitis pigmentosa.

Methods

Within the field of visual prosthetic developments mainly two retinal based concepts are under investigation. One of the concepts is the epiretinal implant which acquires images of an external camera and after preprocessing by a computer reading this visual information into the human visual system. In the subretinal prosthesis design concept an array of stimulation electrodes is placed in the subretinal space. True to the concept the image falling on the retina and its light impulses are converted into electrical currents by microphotodiodes and the retina is stimulated with these locally. To test the feasibility of the concepts the biocompatibility and to determine basic stimulation parameters a lot of animal experiments and first human experiments were carried out

Results

Currently the research conducted by teams in Germany, the USA and Japan into epiretinal and subretinal implants has reached the stage where clinical trials can now be performed. Individual pilot studies were carried out for both the epiretinal and the subretinal implant by different research groups

Discussion

The results achieved by the researchers indicate that cortical action potentials can be triggered by electric retinal stimulation with both concepts. The experimental work has highlighted a whole range of obstacles, not all of which have yet been fully resolved. These findings offer hope that coarse restoration of vision may be feasible by electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brindley GS (1973) Sensory effects of electrical stimulation of the visual and paravisual cortex in man. In: Jung R (ed) Handbook of sensory physiology, vol 7. Springer, Berlin Heidelberg New York, pp 583–594 (Sect. 3B)

    Google Scholar 

  2. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  CAS  PubMed  Google Scholar 

  3. Dobelle WH, Mladejovsky WG (1974b) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    CAS  Google Scholar 

  4. Dobelle WH, Mladejovsky MG, Girvin JP (1974a) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444

    CAS  Google Scholar 

  5. Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP (1976) “Braille” reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112

    CAS  PubMed  Google Scholar 

  6. Eckhorn R, Stett A, Schanze T, Gekeler F, Schwahn H, Zrenner E, Wilms M, Eger M, Hesse L (2001) Physiologische Funktionsprüfungen von Retinaimplantaten an Tiermodellen [Physiological functional evaluation of retinal implants in animal models]. Ophthalmologe 98:369–375

    Article  CAS  PubMed  Google Scholar 

  7. Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol 238:840–845

    Article  CAS  PubMed  Google Scholar 

  8. Humayun MS, De Juan EJ (1998) Artificial vision. Eye 12:605–607

    PubMed  Google Scholar 

  9. Humayun MS, Propst RH, De Juan EJ, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116

    CAS  PubMed  Google Scholar 

  10. Humayun MS, De Juan EJ, Weiland JD, Greenberg R (1999a) An implantable neuro-stimulator device for a retinal prosthesis. IEEE International Solid-State Circuits TP 12.7 (Abstract)

  11. Humayun MS, Weiland JD, De Juan EJ (1999b) Electrical stimulation of the human retina. In: Hollyfield JG, Anderson RE, LaVail MM (eds) Retinal degenerative diseases and experimental therapy. Plenum, New York, pp 479–485

    Google Scholar 

  12. Humayun MS, De Juan EJ, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999c) Pattern electrical stimulation of the human retina. Vision Res 39:2569–2576

    Article  CAS  Google Scholar 

  13. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, De Juan E Jr (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Article  PubMed  Google Scholar 

  14. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, De Juan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081

    CAS  PubMed  Google Scholar 

  15. Normann RA, Maynard EM, Guillory KS, Warren DJ (1996) Cortical implants for the blind. IEEE Spectrum 33:54–59

    Article  Google Scholar 

  16. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587

    Article  CAS  PubMed  Google Scholar 

  17. Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275

    Article  CAS  PubMed  Google Scholar 

  18. Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–241

    CAS  PubMed  Google Scholar 

  19. Rizzo JF, Wyatt JL (2000) Retinal prosthesis. In: Berger J, Fine SL, Maguire MG (eds) Age-related macular degeneration. Mosby, St. Louis, pp 413–432

    Google Scholar 

  20. Schwahn HN, Gekeler F, Sachs H, Kobuch K, Köhler M, Jakob W, Gabel V-P, Zrenner E (2000) Evoked cortical responses following multifocal electrical stimulation in the subretinal space of rabbit and micropig. Invest Ophthalmol Vis Sci 41:S102 (Abstract)

    Google Scholar 

  21. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vision Res 40:1785–1795

    Article  CAS  PubMed  Google Scholar 

  22. Tassiker GE (1956) US Patent 2,760,483

  23. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186

    Article  CAS  PubMed  Google Scholar 

  24. Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery H-C, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552

    Article  CAS  PubMed  Google Scholar 

  25. Wyatt J, Rizzo JF, Grumet A, Edell D, Jensen RJ (1994) Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit. Invest Ophthalmol Vis Sci 35:1380 (Abstract)

    Google Scholar 

  26. Yagi T, Ito Y, Kanda H, Tanaka S, Watanabe M, Uchikawa Y (1999) Hybrid retinal implant: fusion of engineering and neuroscience. IEEE 4:382–385

    Article  Google Scholar 

  27. Zrenner E. (2002) Will retinal implants restore vision? Science 295:1022–1025

    Article  CAS  PubMed  Google Scholar 

  28. Zrenner E, Miliczek K-D, Gabel V-P, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280

    CAS  PubMed  Google Scholar 

  29. Zrenner E, Gekeler F, Gabel V-P, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) Subretinales Mikrophotodioden-Array als Ersatz für degenerierte Photorezeptoren? [Subretinal microphotodiode array as replacement for degenerated photoreceptors?]. Ophthalmologe 98:357–363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut G. Sachs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, H.G., Gabel, VP. Retinal replacement—the development of microelectronic retinal prostheses—experience with subretinal implants and new aspects. Graefe's Arch Clin Exp Ophthalmol 242, 717–723 (2004). https://doi.org/10.1007/s00417-004-0979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0979-7

Keywords

Navigation