Skip to main content

Advertisement

Log in

Single-cell tumor dormancy model of uveal melanoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Background Ocular melanoma is easily treated by the removal of the eye or through plaque radiotherapy. However, after removal or control of the primary tumor, patients can develop fatal liver metastases up to 20 years later. It has been reported that difficulties in imaging single cells and the propensity for tumor cells to replicate rapidly in animal models account for the deficit of single-cell tumor dormancy models. Methods In this paper, we performed two animal experiments using green fluorescent-labeled uveal melanoma cells in nude mice. Cells were injected via tail-vein and the experiments ran 20 and 42 days, respectively. Labeled cells were imaged in vivo via skin-flap and epifluorescent microscopy. Results The first experiment exemplified the feasibility of a single-cell tumor dormancy model; cells were present in multiple organs post-injection, but persisted solely in the liver for the duration of the experiment. The second experiment, demonstrating the presence and viability of these single, metastatic seeds 6 weeks after injection. Conclusion Due to the inherent difficulties in establishing single-celled tumor dormancy models, few exist. In this paper, we have successfully developed a single-cell dormancy model of uveal melanoma, a disease that, in patients, epitomizes tumor dormancy. This model has the potential to reveal the mechanisms behind dormancy, identify patients at high risk for metastatic development, and develop new serum biomarkers for micrometastasis detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

CMCs:

Circulating malignant cells

References

  1. Egan KM, Seddon JM, Glynn RJ et al (1988) Epidemiologic aspects of uveal melanoma. Surv Ophthalmol 32(4):239–251

    Article  PubMed  CAS  Google Scholar 

  2. De Potter P, Shields CL, Shields JA (1996) New treatment modalities for uveal melanoma. Curr Opin Ophthalmol 7(3):27–32

    Article  PubMed  Google Scholar 

  3. Singh AD, Topham A (2003) Survival rates with uveal melanoma in the United States: 1973–1997. Ophthalmology 110(5):962–965

    Article  PubMed  Google Scholar 

  4. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS) (2001) COMS report no. 15. Arch Ophthalmol 119(5):670–676

    Google Scholar 

  5. Kujala E, Makitie T, Kivela T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 44(11):4651–4659

    Article  PubMed  Google Scholar 

  6. De Croock L, Verbraeken H (2002) Metastatic uveal melanoma: diagnosis and treatment. A literature review. Bull Soc Belge Ophtalmol 286:59–63

    Google Scholar 

  7. Bedikian AY (2006) Metastatic uveal melanoma therapy: current options. Int Ophthalmol Clin 46(1):151–156

    Article  PubMed  Google Scholar 

  8. Callejo SA, Antecka E, Blanco PL et al (2006) Identification of circulating malignant cells and its correlation with prognostic factors and treatment in uveal melanoma. A prospective longitudinal study. Eye 21(6):752–759

    Article  PubMed  Google Scholar 

  9. Diener-West M, Reynolds SM, Agugliaro DJ et al (2004) Screening for metastasis from choroidal melanoma: the Collaborative Ocular Melanoma Study Group Report 23. J Clin Oncol 22(12):2438–2444

    Article  PubMed  Google Scholar 

  10. Blanco PL, Marshall JC, Antecka E et al (2005) Characterization of ocular and metastatic uveal melanoma in an animal model. Invest Ophthalmol Vis Sci 46(12):4376–4382

    Article  PubMed  Google Scholar 

  11. Notting IC, Buijs JT, Que I et al (2005) Whole-body bioluminescent imaging of human uveal melanoma in a new mouse model of local tumor growth and metastasis. Invest Ophthalmol Vis Sci 46(5):1581–1587

    Article  PubMed  Google Scholar 

  12. Romer TJ, van Delft JL, de Wolff-Rouendaal D et al (1992) Hamster Greene melanoma implanted in the anterior chamber of a rabbit eye: a reliable tumor model? Ophthalmic Res 24(2):119–124

    Article  PubMed  CAS  Google Scholar 

  13. Marshall JC, Fernandes BF, Di Cesare S et al (2007) The use of a cyclooxygenase-2 inhibitor (Nepafenac) in an ocular and metastatic animal model of uveal melanoma. Carcinogenesis 28(9):2053–2058

    Article  PubMed  CAS  Google Scholar 

  14. Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9(3):208

    Article  PubMed  CAS  Google Scholar 

  15. Bayko L, Rak J, Man S et al (1998) The dormant in vivo phenotype of early stage primary human melanoma: termination by overexpression of vascular endothelial growth factor. Angiogenesis 2(3):203–217

    Article  PubMed  CAS  Google Scholar 

  16. Clark WH (1991) Tumour progression and the nature of cancer. Br J Cancer 64(4):631–644

    PubMed  CAS  Google Scholar 

  17. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev 2(8):563–572

    CAS  Google Scholar 

  18. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    PubMed  CAS  Google Scholar 

  19. Chambers AF, Naumov GN, Varghese HJ et al (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10(2):243–255, vii

    Google Scholar 

  20. Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell cycle (Georgetown, Tex) 5(16):1744–1750

    CAS  Google Scholar 

  21. Marshall JC, Caissie AL, Callejo SA et al (2004) Cell proliferation profile of five human uveal melanoma cell lines of different metastatic potential. Pathobiology 71(5):241–245

    Article  PubMed  Google Scholar 

  22. De Waard-Siebinga I, Blom DJ, Griffioen M et al (1995) Establishment and characterization of an uveal-melanoma cell line. Int J Cancer 62(2):155–161

    Article  PubMed  Google Scholar 

  23. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Canc Inst 82(13):1107–1112

    Article  CAS  Google Scholar 

  24. Saraiva VS, Marshall JC, Cools-Lartigue J et al (2004) Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res 14(5):421–424

    Article  PubMed  CAS  Google Scholar 

  25. Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112( Pt 12):1835–1842

    PubMed  CAS  Google Scholar 

  26. Eskelin S, Pyrhonen S, Summanen P et al (2000) Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology 107(8):1443–1449

    Article  PubMed  CAS  Google Scholar 

  27. Economou MA, All-Ericsson C, Bykov V et al (2005) Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications. Invest Ophthalmol Vis Sci 46(12):4372–4375

    Article  PubMed  Google Scholar 

  28. Hurks HM, Metzelaar-Blok JA, Barthen ER et al (2000) Expression of epidermal growth factor receptor: risk factor in uveal melanoma. Invest Ophthalmol Vis Sci 41(8):2023–2027

    PubMed  CAS  Google Scholar 

  29. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    PubMed  CAS  Google Scholar 

  30. Grahn JC, Reilly DA, Nuccitelli RL et al (2003) Melanocytes do not migrate directionally in physiological DC electric fields. Wound Repair Regen 11(1):64–70

    Article  PubMed  Google Scholar 

  31. Goldberg SF, Harms JF, Quon K et al (1999) Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clin Exp Metastasis 17(7):601–607

    Article  PubMed  CAS  Google Scholar 

  32. Mitsiades CS, Mitsiades NS, Bronson RT et al (2003) Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res 63(20):6689–6696

    PubMed  CAS  Google Scholar 

  33. Naumov GN, Townson JL, MacDonald IC et al (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82(3):199–206

    Article  PubMed  CAS  Google Scholar 

  34. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev 3(6):453–458

    CAS  Google Scholar 

  35. Contag PR, Olomu IN, Stevenson DK et al (1998) Bioluminescent indicators in living mammals. Nat Med 4(2):245–247

    Article  PubMed  CAS  Google Scholar 

  36. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to those in the animal care committee that tended to the mice and to Dr. Malcolm Baines (McGill) for his invaluable aid with the tail-vein injections. Part of this research was funded by a grant from the Cedars Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Logan.

Additional information

Parts of this manuscript have been accepted for presentation at the 2007 European Association for Vision and Eye Research Conference (EVER) and awarded the Travel Grant in Oncology.

Parts of this manuscript were presented at the 2007 Association for Research in Vision and Ophthalmology (ARVO) Conference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, P.T., Fernandes, B.F., Di Cesare, S. et al. Single-cell tumor dormancy model of uveal melanoma. Clin Exp Metastasis 25, 509–516 (2008). https://doi.org/10.1007/s10585-008-9158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9158-2

Keywords

Navigation