Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directional guidance of neuronal migration in the olfactory system by the protein Slit

Abstract

Although cell migration is crucial for neural development, molecular mechanisms guiding neuronal migration have remained unclear. Here we report that the secreted protein Slit repels neuronal precursors migrating from the anterior subventricular zone in the telencephalon to the olfactory bulb. Our results provide a direct demonstration of a molecular cue whose concentration gradient guides the direction of migrating neurons. They also support a common guidance mechanism for axon projection and neuronal migration and suggest that Slit may provide a molecular tool with potential therapeutic applications in controlling and directing cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repulsion of SVZa neurons by the septum and the floorplate and expression of slit genes in the postnatal septum.
Figure 2: Effect of Slit on neurons migrating from SVZa explants.
Figure 3: Neuronal nature and distribution of SVZa neurons.
Figure 4: Spatial relationship between SVZa explants and Slit-expressing cells.
Figure 5: Migration of neurons in the RMS.
Figure 6: Inhibition of the repulsive activity in the septum by RoboN.

Similar content being viewed by others

References

  1. Hardesty, I. On the development and nature of the neuroglia. Am. J. Anat. 3, 229–268 (1904).

    Article  Google Scholar 

  2. Cajal, S. R. Histology of the Nervous System (trans. Swanson, N. & Swanson, L. W.) (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  3. Rakic, P. Neuron–glia relationship during granule cell migration in developing cerebellar cortex. J. Comp. Neurol. 141, 283–312 (1971).

    Article  CAS  Google Scholar 

  4. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971).

    Article  CAS  Google Scholar 

  5. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972).

    Article  CAS  Google Scholar 

  6. Tilney, F. Behavior in its relation to the development of the brain. Part II. Correlation between the development of the brain and behavior in the albino rat from embryonic states to maturity. Bull. Neurol. Inst. NY 3, 252–358 (1933).

    Google Scholar 

  7. Levi-Montalcini, R. The origin and development of the visceral system in the spinal cord of the chick embryo. J. Morphol. 86, 253–278 (1950).

    Article  Google Scholar 

  8. Angevine, J. B. J & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  ADS  Google Scholar 

  9. Hatten, M. E. & Liem, R. H. K. Astroglia provide a template for the positioning of developing cerebellar neurons in vitro. J. Cell Biol. 90, 622–630 (1981).

    Article  CAS  Google Scholar 

  10. Hatten, M. E., Liem, R. H. K. & Mason, C. A. Two forms of glial cells interact differently with neurons in vitro. J. Cell Biol. 98, 193–204 (1984).

    Article  CAS  Google Scholar 

  11. Gray, G. E., Leber, S. M. & Sanes, J. R. Migratory patterns of clonally related cells in the developing central nervous system. Experientia 46, 929–940 (1990).

    Article  CAS  Google Scholar 

  12. Walsh, C. & Cepko, C. Cell lineage and cell migration in the developing cerebral cortex. Experientia 46, 940–947 (1990).

    Article  CAS  Google Scholar 

  13. Norman, M. G., McGillivray, B. C., Kalousek, D. K., Hill, A. & Poskitt, K. J. in Congenital Malformations of the Brain: Pathologic, Embryological, Clinical, Radiological and Genetic Aspects (ed. Norman, M. G.) 223–277 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  14. Gordon, N. Epilepsy and disorders of neuronal migration. II: Epilepsy as a symptom of neuronal migration defects. Dev. Med. Child. Neurol. 38, 1131–1134 (1996).

    Article  CAS  Google Scholar 

  15. Pearlman, A. L., Faust, P. L., Hatten, M. E. & Brunstrom, J. E. New directions for neuronal migration. Curr. Opin. Neurobiol. 8, 45–54 (1998).

    Article  CAS  Google Scholar 

  16. Falconer, D. S. Two new mutants ‘trembler’ and ‘reeler’, with neurological actions in the house mouse. J. Genet. 50, 192–201 (1951).

    Article  CAS  Google Scholar 

  17. D'Arcangelo, G.et al. Aprotein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  ADS  Google Scholar 

  18. Hirotsune, S.et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet. 10, 77–83 (1995).

    Article  CAS  Google Scholar 

  19. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  Google Scholar 

  20. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    Article  CAS  ADS  Google Scholar 

  21. Frotscher, M. Cajal-Retzius cells, Reelin, and the formation of layers. Curr. Opin. Neurobiol. 8, 570–575 (1998).

    Article  CAS  Google Scholar 

  22. Rio, C., Rieff, H. I., Qi, P. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).

    Article  CAS  Google Scholar 

  23. Farbman, A. I. in Smell and Taste in Health and Disease (eds Getchell, T. V. et al.) 19–32 (Raven, New York, 1991).

    Google Scholar 

  24. Altman, J. & Das, G. D. Autoradiographic and histological studies of postnatal neurogenesis I: a longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 127, 337–390 (1966).

    Article  Google Scholar 

  25. Hinds, J. W. Autoradiographic study of histogenesis in the mouse olfactory bulb. II cell proliferation and migration. J. Comp. Neurol. 134, 305–322 (1968).

    Article  CAS  Google Scholar 

  26. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis IV: cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–458 (1969).

    Article  CAS  Google Scholar 

  27. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration n the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  ADS  Google Scholar 

  28. Lois, C., Garcia-Verdugo, J.-M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  ADS  Google Scholar 

  29. Zigova, T.et al. Acomparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev. Biol. 173, 459–474 (1996).

    Article  CAS  Google Scholar 

  30. Hu, H., Tomasiewics, H., Magnuson, T. & Rutishauser, U. The role of polysialic acid in migration of olfactory bulb interneurons precursors in the subventricular zone. Neuron 16, 735–743 (1996).

    Article  CAS  Google Scholar 

  31. Hu, H. & Rutishauser, U. Aseptum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16, 933–940 (1996).

    Article  CAS  Google Scholar 

  32. Wichterle, H., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    Article  CAS  Google Scholar 

  33. Kleinman, H. K., McGravey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K. & Martin, G. R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188–6193 (1982).

    Article  CAS  Google Scholar 

  34. Li, H. S.et al. Vertebrate Slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999).

    Article  CAS  Google Scholar 

  35. Nguyen Ba-Charvet, K. T.et al. Slit2-mediated chemorepulsion and collapse of developing forebrain axons. Neuron 22, 463–473 (1999).

    Article  CAS  Google Scholar 

  36. Wang, K. H.et al. Purificaton of an axon elongation- and branch-promoting activity from brain identifies a mammalian Slit protein as a positive regulator of sensory axon growth. Cell 96, 771–784 (1999).

    Article  CAS  Google Scholar 

  37. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the Robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Article  CAS  Google Scholar 

  38. Brose, K.et al. Evolutionary conservation of the repulsive axon guidance function of Slit proteins and of their interactions with Robo receptors. Cell 96, 795–806 (1999).

    Article  CAS  Google Scholar 

  39. Krull, C. E.et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  Google Scholar 

  40. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  Google Scholar 

  41. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  CAS  Google Scholar 

  42. Ono, K., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609 (1994).

    Article  CAS  Google Scholar 

  43. Rousselot, P., Lois, C. & Alvarez-Buylla, A. Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol. 351, 51–61 (1995).

    Article  CAS  Google Scholar 

  44. Serafini, T.et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  Google Scholar 

  45. Fazeli, A.et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    Article  CAS  ADS  Google Scholar 

  46. Ackerman, S. L.et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997).

    Article  CAS  ADS  Google Scholar 

  47. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  48. Rakic, P. Principles of neural migration. Experientia 46, 882–891 (1990).

    Article  CAS  Google Scholar 

  49. Zallen, J. A., Yi, B. A. & Bargmann, C. I. The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227 (1998).

    Article  CAS  Google Scholar 

  50. Zhu, Y., Li, H. S., Zhou, L., Wu, J. Y. & Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron(in the press).

Download references

Acknowledgements

We thank W. Yuan and D. Ornitz for mouse slit cDNAs; J. Xu, Q. Wang and L. Zhou for help with in situ hybridization; W. Gan and J. Lichtman for help with confocal imaging and analysis; J.Brunstrom and A. Pearlman for discussions; C. S. Goodman and M. Tessier-Lavigne for comments; NIH, NSFC and SCST for support; and the John Merck Fund, NSFC and the Leukemia Society of America for scholar awards (to Y.R. and J.Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane Y. Wu or Yi Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Wong, K., Chen, Jh. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999). https://doi.org/10.1038/22477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22477

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing