Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners

Abstract

THE human brain has anatomically distinct areas in which processing is laid out in space at the millimetre level with substantial variation across individuals. Activity occurs along a cortical ribbon 1.5–3 mm thick1 in response to specific stimuli2,3. Here we report the first use of cortical ribbon analysis on humans using non-invasive functional magnetic resonance imaging techniques performed with a conventional 1.5 T MRI scanner. Changes in activation were detected using T2*-weighted, gradient echo imaging sequences. Subjects observed partial field, flashing checkerboard patterns (left–right, top–bottom, half rings, and wedges). Stimuli produced magnetic resonance signal changes in the 1–8% range, varying at the millimetre scale, which showed contralateral vertically reflected patterns of activation in the visual cortex. To compare the spatial topographies across subjects, computer algorithms were used to control for the subject-unique folding of cortex, providing a flattened cortical ribbon identifying four topographically distinct areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bailey, P. & VonBonin, G. Isocortex in Man (Univ. Illinois Press, Champaign, 1951).

    Google Scholar 

  2. Tootell, R. B. H., Switkes, E., Silverman, S. M. & Hamilton, S. L. J. Neurosci. 8, 1531–1568 (1988).

    Article  CAS  Google Scholar 

  3. Friedman, H., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurosci. 9, 4111–4121 (1989).

    Article  CAS  Google Scholar 

  4. Raichle, M. E. in Handbook of Physiology—The Nervous System (eds Mountcastle, V. B., Plum, F. & Geiger, S. R.) 643–668 (Am. Physiol. Soc., Bethesda, MD, 1988).

    Google Scholar 

  5. Kwong, K. K. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5675–5679 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Shulman, R. G. et al. Proc. natn. Acad. Sci. U.S.A. 90, 3127–3133 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S. & Hyde, J. S. Magn. Reson. Med. 25, 390–397 (1992).

    Article  CAS  Google Scholar 

  8. Thulborn, K. R., Waterton, J. C., Matthews, P. M. & Radda, G. K. Biochim. biophys. Acta 714, 265–270 (1982).

    Article  CAS  Google Scholar 

  9. Ogawa, S. et al. Magn. Reson. Med. 14, 68–78 (1990).

    Article  CAS  Google Scholar 

  10. Press, W. H., Flannery, G. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, New York, 1986).

    MATH  Google Scholar 

  11. Fox, P. T. & Raichle, M. E. J. Neurophysiol. 51, 1109–1120 (1984).

    Article  CAS  Google Scholar 

  12. Glickstein, M. Trends Neurosci. 9, 350–353 (1987).

    Article  Google Scholar 

  13. Fox, P. T. et al. J. cer. Blood Flow Metab. 8, 642–653 (1988).

    Article  CAS  Google Scholar 

  14. Kennedy, D. N., Filipek, P. A. & Caviness, V. S. Jr IEEE Trans. med. Imaging 8, 1–7 (1989).

    Article  CAS  Google Scholar 

  15. Glassner, A. S. Graphic Gems 587 (Academic, New York, 1990).

    Google Scholar 

  16. Clarke, S. & Miklossy, J. J. comp. Neurol. 298, 188–214 (1990).

    Article  CAS  Google Scholar 

  17. Haxby, J. V. et al. in Functional Organization of Human Visual Cortex (eds Gulyas, B. & Roland, P.) (Pergamon, London, in the press).

  18. Haxby, J. V. et al. Proc. natn. Acad. Sci. U.S.A. 88, 1621–1625 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Zeki, S. et al. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W., Noll, D. & Cohen, J. Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365, 150–153 (1993). https://doi.org/10.1038/365150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing