Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations of the BRAF gene in human cancer

Abstract

Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS–RAF–MEK–ERK–MAP kinase pathway mediates cellular responses to growth signals1. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS1,2,3. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in the BRAF gene.
Figure 2: Sequence conservation and mutations in the BRAF activation segment and G loop.
Figure 3: BRAF and ERK activation.

Similar content being viewed by others

References

  1. Peyssonnaux, C. & Eychène, A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell 93, 53–62 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Avruch, J. A. et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127–155 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogelstein, B. et al. Genetic alterations during colorectal-tumour development. N. Engl. J. Med. 319, 525–532 (1988)

    Article  CAS  PubMed  Google Scholar 

  5. van't Veer, L. J. et al. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol. Cell Biol. 9, 3114–3116 (1989)

    Article  CAS  Google Scholar 

  6. Caduff, R. F., Svoboda-Newman, S. M., Ferguson, A. W., Johnston, C. M. & Frank, T. S. Comparison of mutations of Ki-RAS and p53 immunoreactivity in borderline and malignant epithelial ovarian tumours. Am. J. Surg. Pathol. 23, 323–328 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Daya-Grosjean, L., Dumaz, N. & Sarasin, A. The specificity of p53 mutation spectra in sunlight induced human cancers. J. Photochem. Photobiol. B 28, 115–124 (1995)

    Article  CAS  PubMed  Google Scholar 

  8. Halaban, R. The regulation of normal melancyte proliferation. Pigment Cell Res. 13, 4–14 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Busca, R. et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900–2910 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, L. N., Lowe, E. D., Noble, M. E. & Owen, D. J. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett. 430, 1–11 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Hemmer, W., McGlone, M., Tsigelny, I. & Taylor, S. S. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase. J. Biol. Chem. 272, 16946–16954 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. Grant, B. D., Hemmer, W., Tsigelny, I., Adams, J. A. & Taylor, S. S. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry 37, 7708–7715 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Odawara, M. et al. Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science 245, 66–68 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cooke, M. P. & Perlmutter, R. M. Expression of a novel form of the fyn proto-oncogene in hematopoietic cells. New Biol. 1, 66–74 (1989)

    CAS  PubMed  Google Scholar 

  15. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marais, R., Light, Y., Paterson, H. F., Mason, C. S. & Marshall, C. J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, B. H. & Guan, K. L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 19, 5429–5439 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vojtek, A. B. & Der, C. J. Increasing complexity of the Ras signalling pathway. J. Biol. Chem. 273, 19925–19928 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313, 241–243 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Stacey, D. W., DeGudicibus, S. R. & Smith, M. R. Cellular ras activity and tumour cell proliferation. Exp. Cell Res. 171, 232–242 (1987)

    Article  CAS  PubMed  Google Scholar 

  21. Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N. Engl. J. Med. 344, 1031–1037 (2001)

    CAS  PubMed  Google Scholar 

  23. Rozycka, M., Collin, N., Stratton, M. R. & Wooster, R. Rapid detection of DNA sequence variants by conformation sensitive capillary electrophoresis. Genomics 70, 34–40 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Mittnacht, S., Paterson, H., Olson, M. F. & Marshall, C. J. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr. Biol. 7, 219–221 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients who donated samples for these studies, the UK Children's Cancer Study Group for provision of paediatric primary tumour samples, the NCCGP for provision of cord blood control DNA samples, and W. Haynes for assistance with preparation of the manuscript. We would also like to acknowledge the Wellcome Trust, Institute of Cancer Research and Cancer Research UK for support. C.J.M. is a Gibb life fellow of the Cancer Research UK. G.P. and A.C. are funded in part by Regione Autonoma della Sardegna. B.A.G. is supported by Breakthrough Breast Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wooster.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

41586_2002_BFnature00766_MOESM1_ESM.xls

Supplementary Table 1: Primer sequences used to amplify BRAF, HRAS, KRAS and NRAS; BRAF mutations; BRAF polymorphisms; RAS mutations; Full list of cell lines screened (XLS 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, H., Bignell, G., Cox, C. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). https://doi.org/10.1038/nature00766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00766

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing