Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three autosomal dominant corneal dystrophies map to chromosome 5q

Abstract

The two most common autosomal dominant dystrophies of the corneal stroma are lattice corneal dystrophy type I and granular dystrophy. A third autosomal dominant stromal dystrophy (Avellino) has also been recognized. Chromosome linkage analysis of four families with Avellino dystrophy mapped the disease–causing gene to chromosome 5q. Subsequent linkage analysis of two families with typical lattice dystrophy and two with typical granular dystrophy also revealed significant linkage with the same markers. Thus, each of three clinically and histopathologically distinct phenotypes is independently linked to 5q. The maximum combined lod score using all 114 affected patients was 28.6 with marker D5S393. None of the 14 known human amyloid–associated genes map to chromosome 5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Midura, R.J. et al. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy. J. biol. Chem. 265, 15947–15955 (1990).

    CAS  PubMed  Google Scholar 

  2. Meretoja, J. Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. Ann. din. Res. 1, 314–324 (1959).

    Google Scholar 

  3. de la Chapelle, A. et al. Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nature Genet. 2, 157–160 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Jones, S.T. & Zimmerman, L.E. Histopathologic differentiation of granular, macular and lattice dystrophies of the cornea. Am. J. Ophthal. 51, 394–410 (1961).

    Article  CAS  PubMed  Google Scholar 

  5. Folberg, R. et al. Clinically atypical granular corneal dystrophy with pathologic features of lattice-like amyloid deposits: A study of three families. Ophthalmology 95, 46–51 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Holland, E.J. et al. Avellino corneal dystrophy: Clinical manifestations and natural history. Ophthalmology 99, 1564–1568 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Rosenwasser, G. et al. Phenotypic Variation in Combined Granular/Lattice (Avellino) Corneal Dystrophy. Arch. Ophth. 111, 1546–1552 (1993).

    Article  CAS  Google Scholar 

  8. Jacobson, D.R. & Buxbaum, J.N. Genetic aspects of amyloidosis. Adv. hum. Genet. 20, 69–123 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Hsiao, K.I. et al. Mutant prion proteins in Gerstmann-Straussler-Scheinker disease with neurofibrillary tangles. Nature Genet. 1, 68–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Hsiao, K. et al. Mutation of the prion protein in Libyan Jews with Creutzfeldt-Jakob disease. New Engl. J. Med. 324, 1091–1097 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Medori, R. et al. Fatal familial insomnia, a prion disease with a mutation at Codon 178 of the prion protein gene. New Engl. J. Med. 326, 444–449 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Tagliavini, F.R. Giaccone, G., Verga, L., Ghiso, J., Frangione, B., Buglanni, O. Alzheimer patients: Preamyloid deposits are immunoreactive with antibodies to extracellular domains of the amyloid precursor protein. Neurosci. Lett. 128, 117–120 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Sipe, J.D., Ann. Rev. Biochem. 61, 947–975 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Dwelet, F.E. & Benson, M.D. Primary structure of an amyloid pre-albumin and it plasma precurson in a heredofamilial polyneuropathy of Swedish origin. Proc. natn. Acad. Sci. U.S.A. 81, 694–698 (1984).

    Article  Google Scholar 

  15. Johnson, K.H., O'Brien, T.D., Betsholtz, C. & Westermark, P. Islet amyloid, islet amyloid polypeptide, and diabetes mellitus. New Engl. J. Med. 321, 513–518 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Kluve-Beckerman, B. et al. Localization of human SAA gene(s) to chromosome 11 and detection of DNA polymorphisms. Biochem. biophys. Res. Commun. 137, 1196–1204 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Sletten, K. & Westermark, P. Characterization of molecular forms of calcitonin in amyloid fibrils from medullary carcinoma of the thyroid. VI Int. Symp. Amyloidosis Prog. Abst. 113 (1990).

  18. Woo, P., Robson, M., & Ansell, B.M. A genetic marker for systemic amyloidosis in juvenile arthritis. Lancet 2, 767–769 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Pepys, M.B. et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362, 553–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Benson, M.D. & Liepnieks, J., Uemichi, T., Wheeler, G. & Correa, R. Hereditary renal amyloidosis associated with a mutant fibrinogen α-chain. Nature Genet. 3, 252–255 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Nichols, W.C., Gregg, R.E., Brewer Jr., B. & Benson, M.D. A mutation in apolipoprotein A-1 In the lowa Type of familial amyloidotic polyneuropathy. Genomics 8, 318–323 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Ghiso, J., Pons-Estel, B. & Frangione, B. Hereditary cerebral amyloid angiopathy: The amyloid fibrils contain a protein which is a variant of cystatin C, an inhibitor of lysosomal cysteine proteases. Biochem. biophys. Res. Commun. 136, 548–554 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Gorevic, P.D. et al. Polymerization of intact β2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc. natn. Acad. Sci. U.S.A. 83, 7908–7912 (1986).

    Article  CAS  Google Scholar 

  25. Johansson, B., Wernstedt, C. & Westermark, P. Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem. biophys. Res. Commun. 148, 1087–1092 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Polymeropoulos, M.H., Xiao, H., Rath, D.S. & Merril, C.R. Dinucleotide repeat polymorphism at the human interteukin 9 gene. Nucl. Acids Res. 19, 688 (1991).

    PubMed  PubMed Central  Google Scholar 

  27. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Szubryt, S.R., Neuman, W.L. & Westbrook, C.A. Dinucleotide repeat polymorphism at the D5S178 locus. Hum. molec. Genet. 2, 90 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Grimberg, J. et al. A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucl. Acids Res. 17, 8390 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bassam, B.J., Caetano-Anolles, G. & Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Nichols, B.E., Stone, E.M. & Sheffield, V.C.A. user-friendly Macintosh interface for DOS-based linkage analysis. Am. J. hum. Genet. 51, A369 (1992).

    Google Scholar 

  32. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, E., Mathers, W., Rosenwasser, G. et al. Three autosomal dominant corneal dystrophies map to chromosome 5q. Nat Genet 6, 47–51 (1994). https://doi.org/10.1038/ng0194-47

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0194-47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing