Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X–linked retinitis pigmentosa (RP3)

Abstract

X-linked retinitis pigmentosa (xIRP) is a severe progressive retinal degeneration which affects about 1 in 25,000 of the population. The most common form of xIRR RP3, has been localised to the interval between CYBB and OTC in Xp21.1 by linkage analysis and deletion mapping. Identification of microdeletions within this region has now led to the positional cloning of a gene, RPGR, that spans 60 kb of genomic DMA and is ubiquitously expressed. The predicted 90 kD protein contains in its N-terminal half a tandem repeat structure highly similar to RCC1 (regulator of chromosome condensation), suggesting an interaction with a small GTPase. The C-terminal half contains a domain, rich in acidic residues, and ends in a potential isoprenylation anchorage site. The two intragenic deletions, two nonsense and three missense mutations within conserved domains provide evidence that RPGR (retinitis pigmentosa GTPase regulator) is the RP3 gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heckenlively, J.R. Retinitis Pigmentosa 1–269 (Lippincott Company, Philadelphia, 1988).

  2. Dryja, T.P. & Li, T. Molecular genetics of retinitis pigmentosa. Hum. Molec. Genet. 4, 1739–1743 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Bircl, A.C. X-linked retinitis pigmentosa. Br. J. Ophthalmol. 59, 177–199 (1975).

    Article  Google Scholar 

  4. Fishman, G.A., Farber, M.D. & Deriacki, D.J. X-linked retinitis pigmentosa: profile of clinical findings. Arch. Ophthalmol. 106, 369–375 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Jay, M. On the heredity of retinitis pigmentosa. Br. J. Ophthalmol. 66, 405–416 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. fishmen, G.A., Retinitis pigmentosa.Genetic percentages. Arch. Ophthalmol. 96, 822–326 (1978).

    Article  Google Scholar 

  7. Well, D. et al. Defective myosin VIIA gene responsible for Usher Syndrome type IB. Nature 374, 60–61 (1995).

    Article  CAS  Google Scholar 

  8. Narcisi, T.M.E. et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am. J. Hum. Genet. 57, 1298–1310 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Holt, I.J., Handing, A.E., Petty, R.K. & Mogan-Hughes, J.A., A new mitochondria) disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharya, S.S. et al. Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature 309, 253–255 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Ott, J. et al. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proc. Natl. Acad. Sd. USA. 87, 701–704 (1990).

    Article  CAS  Google Scholar 

  12. McGuire, R.E. et al. X-linked dominant cone-rod degeneration: linkage mapping of a new locus for retinitis pigmentosa (RP15) to Xp22.13-p22.11. Am. J. Hum. Genet. 57, 87–94 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Musarella, M.A. et al. Multipoint linkage analysis and heterogeneity testing in 20 X-linked retinitis pigmentosa families. Genomics 8, 286–296 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J.D. et al. Linkage heterogeneity between X-linked retinitis pigmentosa andamapof 10RFLP loci. Am. J. Hum. Genet. 46, 401–411 (1989).

    Google Scholar 

  15. league, P.W. et al. Heterogeneity analysis in 40 X-linked retinitis pigmentosa families. Am. J. Hum. Genet. 55, 105–111 (1994).

    Google Scholar 

  16. Bargen, A.A.B. et al. Multipoint linkage analysis and homogeneity tests in 15 Dutch X-linked retinitis pigmentosa families. Ophthal. Genet. 16, 63–70 (1995).

    Article  Google Scholar 

  17. Roux, A.-F. et al.ldentrficationofagenefromXp21 with similarity to the tctex-1 gene of the murine t complex. Hum. Molec. Genet. 3, 257–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Aldred, M.A., Jay, M. & Wright, A.F. X-linked retinitis pigmentosa. in Wright A.F., Jay B. (eds) The Molecular Genetics of Inherited Eye Disorders, Harwood Academic Publishers, Switzerland, 259–276 (1994).

    Chapter  Google Scholar 

  19. Francke, U. et al. Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa and McLeod syndrome. Am. J. Hum. Genet. 37, 250–267 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. De Saint-Basile, G. et al. Xp21 DNA microdeletion in a patient with chronic granulomatous disease, retinitis pigmentosa, and McLeod phenotype. Hum. Genet. 80, 85–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Meindl, A. et al. A gene (SRPX) encoding a sushi-repeat-containing protein is deleted in patients with X-linked retinitis pigmentosa. Hum. Molec. Genet. 4, 2339–2346 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Dry, K.L. et al. Identification of a novel gene, ETX1, from Xp21.1, a candidate gene for X-linked retinitis pigmentosa (RP3). Hum. Molec. Genet. 4, 2347–2353 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA. 88, 11261–11265 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murakawa, K., Matsubara, K., Fukushima, A., Yoshii, J. & Okubo, K. Chromosomal assignments of 3′-directed partial cDNA sequences representing novel genes expressed in granulocytoid cells. Genomics 23, 379–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  26. Wennborg, A., Sohlberg, B., Angerer, D., Klein, G. & von Gabain, A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc. Natl. Acad. Sd. USA. 92, 7322–7326 (1995).

    Article  CAS  Google Scholar 

  27. Dasso, M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem. Sci. 18, 96–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Ohtsubo, M., et al. Isolation and charcterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Devel. 1, 585–593 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Nomura, N. et al. Prediction of the coding sequences of unidentified genes. I. The coding sequences of 40 new genes (KIM0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid celllineKG-1 (supplement)DNA Res. 1, 47–56 (1994).

  30. Nishitani, H., Kobayashi, H., Ohtsubo, M. & Nishimoto, T. Cloning of Xenopus RCC1 cDNA, a homolog of the human RCC1 gene: complementation of tsBN2 mutation and identification of the product. J. Biochem. 107, 228–235.

    Article  CAS  PubMed  Google Scholar 

  31. Clark, K.L. & Sprague, G.F. Yeast pheromone response pathway: characterization of a suppressor that restores mating to receptorless mutants. Molec. Cell. Biol. 9, 2682–2694 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moore, M.S. Protein translocation: nuclear export - out of the dark. Curr. Bid. 6, 137–140 (1996).

    Article  CAS  Google Scholar 

  33. Gorbatenya, A.E., Koonin, E.V., Donchenko, A.P. & Blinov, V.M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucl. Acids Res. 17, 4713–4730 (1989).

    Article  Google Scholar 

  34. Kemp, B.E. & Pearson, R.B. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, M.S., Goktetein, L., 366, 14–15 (1993).

  36. Chou, R.Y., & Fasman, G.D . Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47, 45–147 (1978).

    CAS  PubMed  Google Scholar 

  37. Furuno, N. et al. Complete nucteotide sequence of the human RCC1 gene involved in coupling between DNA replication and mitosis. Genomics 11, 459–461 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Bassi, M.T. et al. Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromsome. Nature Genet. 10, 13–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Ketteriing, R.R., Liao, D. & Sommer, S.S. Are some apparently simple deletions actually two concerted deletions that result from interacting RY(i) hairpin loops?. Am. J. Hum. Genet. 56, 343–346 (1995).

    Article  Google Scholar 

  41. Bischoff, F.R. & Ponstingl, H. Catalysis of guanine nucteotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Rush, M., Drivas, G. & D'Eustachio, P. The small nuclear GTPase Ran: how much does it run?. BbEssays. 18, 103–112 (1996).

    Article  CAS  Google Scholar 

  43. Scheffzek, K., Ktebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, Y., Dahlberg, J.E. & Lund, E. Diverse effects of the guanine nucleotide exchangefactorRCCI on RNA transport. Science. 267, 1807–1810 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Klebe, C., Bischoff, F.R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAPI. Biochem. 34, 639–647 (1995).

    Article  CAS  Google Scholar 

  46. Beddow, A.L., Richards, S.A., Orem, N.R. & Macara, I.G., GTPase-binding domain: identification by expression cloning and charcterization of a conserved sequence motif. Proc. Natl. Acad. Sci. USA. 92, 3328–3332 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saitoh, H. & Dasso, M. The RCC1 protein interacts with Ran, RanBPI, hsc70, and a 340-kDa protein in Xenopus extracts. J. Biol. Chem. 270, 10658–10663 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Ren, M. et al. Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing. Motec. Cell. Btol. 15, 2117–2124 (1995).

    CAS  Google Scholar 

  49. Coutavas, E.E. et al. Tissue-specific expression of Ran isoforms in the mouse. Mamm. Genome. 5, 623–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Biochemistry of the Eye(Ed. Berman, E.R.) (Plenum, New York, 1991).

  51. Seabra, M.C., Brown, M.S. & Goldstein, J.L. Retinal degeneration in choroideremia: deficiency of Rab geranylgeranyl transferase. Science. 259, 377–381 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Nizetic, D. et al. Construction, arraying and high-density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. Proc. Natl. Acad. Sd. USA. 88, 3233–3237 (1991).

    Article  CAS  Google Scholar 

  53. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sd. USA. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindl, A., Dry, K., Herrmann, K. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X–linked retinitis pigmentosa (RP3). Nat Genet 13, 35–42 (1996). https://doi.org/10.1038/ng0596-35

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing