Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects

An Erratum to this article was published on 01 October 1994

Abstract

The human eye malformation aniridia results from haploinsufficiency of PAX6, a paired box DNA–binding protein. To study this dosage effect, we characterized two PAX6 mutations in a family segregating aniridia and a milder syndrome consisting of congenital cataracts and late onset corneal dystrophy. The nonsense mutations, at codons 103 and 353, truncate PAX6 within the N–terminal paired and C–terminal PST domains, respectively. The wild–type PST domain activates transcription autonomously and the mutant form has partial activity. A compound heterozygote had severe craniofacial and central nervous system defects and no eyes. The pattern of malformations is similar to that in homozygous Sey mice and suggests a critical role for PAX6 in controlling the migration and differentiation of specific neuronal progenitor cells in the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jiang, J. & Levine, M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Chalepakis, G. et al. Pax: gene regulators in the developing nervous system. J. Neurobiol. 24, 1367–1384 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Noll, M. Evolution and role of Pax genes. Curr. Opin. Genet. Develop. 3, 595–605 (1993).

    Article  CAS  Google Scholar 

  4. Koseki, H. et al. A role for Pax-1 as a mediator of notochord signals during the dorsoventral specification of vertebrae. Development 119, 649–660 (1993).

    CAS  PubMed  Google Scholar 

  5. Keller, S.A. et al. Kidney and retinal defects (Krd), a transgene induced mutation with a deletion of mouse chromosome 19 that includes the Pax-2 locus. Genomics (in the press).

  6. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3 . Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Hill, R.E. et al. Mouse small eye results from mutations in a palred-llke homeobox-contalning gene. Nature 354, 522–525 (1991) [erratum, ibid. 356, 750 (1992)].

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin, C.T. et al. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1991).

    Article  Google Scholar 

  9. Tassabehji, M. et al. Waardenburg's sundrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1991).

    Article  Google Scholar 

  10. Ton, C.T.T. et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet. 1, 328–332 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Glaser, T., Walton, D.S. & Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet. 2, 232–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hanson, I.M. et al. PAX6 mutations in aniridia. Hum. molec. Genet. 2, 915–920 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Walther, C. & Gruss, P. Pax-6, a murine paired-box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  15. Epstein, J., Cai, J., Glaser, T., Jepeal, L. & Maas, R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformatlonal changes. J. biol. Chem. 269, 8355–6361 (1994).

    CAS  PubMed  Google Scholar 

  16. Mermod, N., O'Neill, E.A., Kelly, T.J. & Tjian, R. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58, 741–753 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Theill, L.E., Castrillo, J.-L., Wu, D. & Karin, M. Dissection of functional domains of the pituitary-specific transcription factor GHF-1. Nature 342, 945–948 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Hogan, B.L.M. et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. exp. Morphol. 97, 95–110 (1986).

    CAS  PubMed  Google Scholar 

  19. Schmahl, W., Knoedlseder, M., Favor, J. & Davidson, D. Defects of neuronal migration and the pathogenesis of cortical malformations are associated with small eye (Sey) in the mouse, a point mutation at the Pax-6 locus. Acta Neuropathol. 88, 126–135 (1993).

    Article  Google Scholar 

  20. Hodgson, S.V. & Saunders, K.E. A probable case of the homozygous condition of the aniridia gene. J. med. Genet. 17, 478–480 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edwards, J.G., Lampert, R.P., Hammer, M.E. & Young, S.R. Ocular defects and dysmorphic features in three generations. J. clin. Dysmorph. 2, 8–12 (1984).

    Google Scholar 

  22. Nelson, L.B. et al. Aniridia. A review. Surv. Ophthalmol. 28, 621–642 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Devel. 7, 2048–2061 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Cooper, D.N. & Youssoufian, H. The CpG dinucleotide and human genetic disease. Hum. Genet. 78, 151–155 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Glaser, T. et al. PAX6 gene mutations in aniridia. In Molecular genetics of human ocular disorders (ed. Wiggs, J.) (Wiley, New York, in the press).

  26. Carriere, C. et al. Charcterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Molec. cell. Biol. 13, 7257–7266 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chalepakis, G. et al. The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Zannini, M., Francis-Lang, H., Plachov, D. & Di Lauro, R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Molec. cell. Biol. 12, 4230–4241 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed In Blymphocytes, the devloping CNS and adult testis. Genes Dev. 6, 1589–1607 (1993).

    Article  Google Scholar 

  30. Fickenscher, H.R., Chalepakis, G. & Gruss, P. Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol. 12, 381–391 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Kozmik, Z., Kurzbauer, R., Dorfler, P. & Busslinger, M. Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Molec. cell. Biol. 13, 6024–6035 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plaza, S., Dozier, C. & Saule, S. Quail PAX-6 (PAX-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ. 4, 1041–1050 (1993).

    CAS  PubMed  Google Scholar 

  33. Matsuo, T. et al. A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature Genet. 3, 299–304 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Mackman, G., Brightbill, F.S. & Opitz, J.M. Comeal changes in aniridia. Am. J. Ophthalmol. 87, 497–502 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Margo, C.E. Congenital aniridia: a histopathologic study of the anterior segment in children. J. Ped. Ophthalmol. Strabismus 20, 192–198 (1983).

    CAS  Google Scholar 

  36. Ton, C.C.T., Miwa, H. & Saunders, G.F. Small eye (Sey): Cloning and characterization of the murine homolog of the human aniridia gene. Genomics 13, 251–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Hittner, H.M., Riccardi, V.M., Ferrell, R.E., Borda, R.R. & Justice, J. Variable expressivity in autosomal dominant aniridia by clinical, electrophysiology and anglographic criteria. Am. J. Ophthalmol. 89, 531–539 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Duke-Elder, S. System of Ophthalmology, Congenital Deformities of the Eye, vol.III, part 2, pp. 415–429 and 488–495 (C. V. Mosby, St. Louis, 1964).

    Google Scholar 

  39. Rakic, P. Defects of neuronal migration and the pathogenesis of cortical malformations. Prog. brain Res. 73, 15–37 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. McConnell, S.K. The generation of neuronal diversity in the central nervous sytem. Annu. Rev. Neurosci. 14, 269–300 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Altman, J. & Bayer, A. Horizontal compartmentation in the germinal matrices and intermediate zone of the embryonic rat cerebral cortex. Exp. Neurol. 107, 36–47 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Dambly-Chaudiere, C. et al. The paired box gene pox neuro: A determinant of poly-innervated sense organs in Drosophila. Cell 69, 159–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, X. & Noll, M. Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367, 83–87 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Krauss, S., Maden, M., Holder, N. & Wilson, S.W. Zebratish pax[b] is Involved in the formation of the midbrain-hindbrain boundary. Nature 380, 87–89 (1992).

    Article  Google Scholar 

  46. Wright, D.K. & Manos, M.M. Sample preparation from paraffin-embedded tissues. In PCR protocols: a guide to methods and applications 153–158 (Academic Press, 1990).

    Google Scholar 

  47. Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200, 81–88 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Lillie, J.W. & Green, M.R. Transcription activation by the adenovirus E1a protein. Nature 338, 39–44 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Ma, J. & Ptashne, M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853 (1987).

    Article  CAS  PubMed  Google Scholar 

  50. Gorman, C.M., Moffat, L.F. & Howard, B.H. Recombinant genomes which express chloramphenical acetyltransferase in mammalian cells. Molec. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, T., Jepeal, L., Edwards, J. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7, 463–471 (1994). https://doi.org/10.1038/ng0894-463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0894-463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing