Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33

A Correction to this article was published on 01 May 1994

Abstract

Fukuyama type congenital muscular dystrophy (FCMD) is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. Twenty–one FCMD families, 13 of them with consanguineous marriages, were analysed by genetic linkage analyses with polymorphic microsatellite markers to map the FCMD gene. Significant lod scores were obtained with the markers D9S58 (Zmax=5.81 at θ=0.06), D9S58 (Zmax=4.33 at θ=0.02), and HXB (Zmax=3.28 at θ=0.09) on chromosome 9q31–33. Multipoint analysis placed FCMD between D9S58 and D9S58, with a maximum lod score of 16.93. These markers will be useful for presymptomatic, prenatal and carrier diagnosis of family members carrying FCMD, and they represent important resources for the identification of a gene responsible for FCMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fukuyama, Y., Kawazura, M. & Haruna, H. A peculiar form of congenital progressive muscular dystrophy. Report of fifteen cases. Paediatria Universitatis Tokyo 4, 5–8 (1960).

    Google Scholar 

  2. Fukuyama, Y., Osawa, M. & Suzuki, H. Congenital muscular dystrophy of the Fukuyama type —clinical, genetic and pathological considerations. Brain Dev. 3, 1–30 (1981).

    Article  CAS  Google Scholar 

  3. Nonaka, I., Sugita, H., Takada, K. & Kumagai, K. Muscle histochemistry in congenital muscular dystrophy with central nervous system involvement. Muscle Nerve 5, 102–106 (1982).

    Article  CAS  Google Scholar 

  4. Matsumura, K., Nonaka, I. & Campbell, K.P. Abnormal expression of dystrophin-associated proteins in Fukuyama-type congenital muscular dystrophy. Lancet 341, 521–522 (1993).

    Article  CAS  Google Scholar 

  5. Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  Google Scholar 

  6. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  Google Scholar 

  7. Ibraghimov-Beskrovnaya, O. et al. Dystroglycan: tissue distribution, human muscle cDNA, genomic structure and chromosome mapping. Am. J. hum. Genet. 51 (suppl.), A130 (1992).

    Google Scholar 

  8. Tanaka, K. et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 348, 73–76 (1990).

    Article  CAS  Google Scholar 

  9. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  10. Kwiatkowski, D.J. et al. Construction of a GT polymorphism map of human 9q. Genomics 12, 229–240 (1992).

    Article  CAS  Google Scholar 

  11. Ozelius, L.J. et al. A genetic linkage map of human chromosome 9q. Genomics 14, 715–720 (1992).

    Article  CAS  Google Scholar 

  12. Ozelius, L. et al. Dinucleotide repeat polymorphism for the hexabrachion gene (HXB) on chromosome 9q32-34. Hum. molec. Genet. 1, 141 (1992).

    Article  CAS  Google Scholar 

  13. Takada, K., Nakamura, H. & Tanaka, J. Cortical dysplasia in congenital muscular dystrophy with central nervous system involvement (Fukuyama type). J. Neuropathol. exp. Neurol. 43, 395–407 (1984).

    Article  CAS  Google Scholar 

  14. Arahata, K. et al. Dystrophin diagnosis: comparison of dystrophin abnormalities by immunofluorescence and immunoblot analyses. Proc. natn. Acad. Sci. U.S.A. 86, 7154–7158 (1989).

    Article  CAS  Google Scholar 

  15. Arikawa, E., Ishihara, T., Nonaka, I., Sugita, H. & Arahata, K. Immunocytochemical analysis of dystrophin in congenital muscular dystrophy. J. neurol. Sci. 105, 79–87 (1991).

    Article  CAS  Google Scholar 

  16. Beggs, A.H. et al. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy. Proc. natn. Acad. Sci. U.S.A. 89, 623–627 (1992).

    Article  CAS  Google Scholar 

  17. Goto, M., Rubenstein, M., Weber, J., Woods, K. & Drayna, D. Genetic linkage of Werner's syndrome to five markers on chromosome 8. Nature 355, 735–737 (1992).

    Article  CAS  Google Scholar 

  18. Pras, E. et al. Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16. New Engl. J. Med. 326, 1509–1513 (1992).

    Article  CAS  Google Scholar 

  19. Ben Othmane, K. et al. Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nature Genet. 2, 315–317 (1992).

    Article  CAS  Google Scholar 

  20. Ben Hamida, C. et al. Localization of Friedreich ataxia phenotype with selective vitamine deficiency to chromosome 8q by homozygosity mapping. Nature Genet. 5, 195–200 (1993).

    Article  CAS  Google Scholar 

  21. Pollak, M.R. et al. Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nature Genet. 5, 210–204 (1993).

    Article  Google Scholar 

  22. Farrall, M. Homozygosity mapping: familiarity breeds debility. Nature Genet. 5, 107–108 (1993).

    Article  CAS  Google Scholar 

  23. Dobyns, W.B. et al. Diagnostic criteria for Walker-Warburg syndrome. Am. J. med. Genet. 32, 195–210 (1989).

    Article  CAS  Google Scholar 

  24. Santavuori, P. & Leisti, J. Muscle, eye and brain disease (MEB). Population Structure and Genetic Disorders (eds Eriksson, A.W. et al.) 647–651 (Academic Press, New York, 1980).

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F. & Maniatis, T. . in Molecular Cloning 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  26. Goelz, S.E., Hamilton, S.R. & Vogelstein, B. Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem. Biophys. Res. Commun. 130, 118–126 (1985).

    Article  CAS  Google Scholar 

  27. NIH/CEPH collaborative mapping group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  28. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  29. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multi-point linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  30. Osawa, M. A genetical epidemiological study on congenital progressive muscular dystrophy (Fukuyama type). J. Tokyo Women's med. Coll. 48, 112–149 (1978).

    Google Scholar 

  31. Takeshita, K., Yoshino, K., Kitahara, T., Nakashima, T. & Kato, N. Survey of Duchenne type and congenital type of muscular dystrophy in Shimane, Japan. Jpn. J. hum. Genet. 22, 43–47 (1977).

    Article  CAS  Google Scholar 

  32. Blumenfeld, A. et al. Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis. Nature Genet. 4, 160–164 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, T., Segawa, M., Nomura, Y. et al. Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33. Nat Genet 5, 283–286 (1993). https://doi.org/10.1038/ng1193-283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-283

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing