Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opsin activation as a cause of congenital night blindness

Abstract

Three different mutations of rhodopsin are known to cause autosomal dominant congenital night blindness in humans. Although the mutations have been studied for 10 years, the molecular mechanism of the disease is still a subject of controversy. We show here, using a transgenic Xenopus laevis model, that the photoreceptor cell desensitization that is a hallmark of the disease results from persistent signaling by constitutively active mutant opsins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models of how the rhodopsin mutant G90D might cause congenital night blindness.
Figure 2: Expression of EGFP-tagged rhodopsin in rod photoreceptor cells of transgenic X. laevis.
Figure 3: Single-cell photoresponse of rod photoreceptor cells from wild-type and transgenic frogs.
Figure 4: Desensitization from night blindness mutants and phenotypic rescue with 11-cis-retinal.
Figure 5: Desensitization from the counterion mutant E113Q and phenotypic rescue with retinal.

Similar content being viewed by others

References

  1. Dryja, T.P. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 130, 547–563 (2000).

    Article  CAS  Google Scholar 

  2. Sieving, P.A. et al. Dark-light: model for nightblindness from the human rhodopsin Gly-90→Asp mutation. Proc. Natl. Acad. Sci. USA 92, 880–884 (1995).

    Article  CAS  Google Scholar 

  3. al-Jandal, N. et al. A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum. Mutat. 13, 75–81 (1999).

    Article  CAS  Google Scholar 

  4. Dryja, T.P., Berson, E.L., Rao, V.R. & Oprian, D.D. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat. Genet. 4, 280–283 (1993).

    Article  CAS  Google Scholar 

  5. Sieving, P.A. et al. Constitutive “light” adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J. Neurosci. 21, 5449–5460 (2001).

    Article  CAS  Google Scholar 

  6. Rao, V.R. & Oprian, D.D. Activating mutations of rhodopsin and other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 25, 287–314 (1996).

    Article  CAS  Google Scholar 

  7. Rao, V.R., Cohen, G.B. & Oprian, D.D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639–642 (1994).

    Article  CAS  Google Scholar 

  8. Gross, A.K., Rao, V.R. & Oprian, D.D. Characterization of rhodopsin congenital night blindness mutant T94I. Biochemistry 42, 2009–2015 (2003).

    Article  CAS  Google Scholar 

  9. Barlow, R.B., Birge, R.R., Kaplan, E. & Tallent, J.R. On the molecular origin of photoreceptor noise. Nature 366, 64–66 (1993).

    Article  CAS  Google Scholar 

  10. Birge, R.R. & Barlow, R.B. On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophys. Chem. 55, 115–126 (1995).

    Article  CAS  Google Scholar 

  11. Zvyaga, T.A., Fahmy, K., Siebert, F. & Sakmar, T.P. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Biochemistry 35, 7536–7545 (1996).

    Article  CAS  Google Scholar 

  12. Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).

    CAS  PubMed  Google Scholar 

  13. Tam, B.M., Moritz, O.L., Hurd, L.B. & Papermaster, D.S. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J. Cell Biol. 151, 1369–1380 (2000).

    Article  CAS  Google Scholar 

  14. Jin, S., McKee, T.D. & Oprian, D.D. An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis. FEBS Lett. 542, 142–146 (2003).

    Article  CAS  Google Scholar 

  15. Batni, S., Scalzetti, L., Moody, S.A. & Knox, B.E. Characterization of the Xenopus rhodopsin gene. J. Biol. Chem. 271, 3179–3186 (1996).

    Article  CAS  Google Scholar 

  16. Knox, B.E., Schlueter, C., Sanger, B.M., Green, C.B. & Besharse, J.C. Transgene expression in Xenopus rods. FEBS Lett. 423, 117–121 (1998).

    Article  CAS  Google Scholar 

  17. Mani, S.S. et al. Xenopus rhodopsin promoter. Identification of immediate upstream sequences necessary for high level, rod-specific transcription. J. Biol. Chem. 276, 36557–36565 (2001).

    Article  CAS  Google Scholar 

  18. Baylor, D.A. & Hodgkin, A.L. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234, 163–198 (1973).

    Article  CAS  Google Scholar 

  19. Cornwall, M.C., Fein, A. & MacNichol, E.F. Jr. Cellular mechanisms that underlie bleaching and background adaptation. J. Gen. Physiol. 96, 345–372 (1990).

    Article  CAS  Google Scholar 

  20. Kefalov, V.J., Cornwall, M.C. & Crouch, R.K. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J. Gen. Physiol. 113, 491–503 (1999).

    Article  CAS  Google Scholar 

  21. Moritz, O.L., Tam, B.M., Papermaster, D.S. & Nakayama, T. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. J. Biol. Chem. 276, 28242–28251 (2001).

    Article  CAS  Google Scholar 

  22. Steinberg, G., Ottolenghi, M. & Sheves, M. pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments. Biophys. J. 64, 1499–1502 (1993).

    Article  CAS  Google Scholar 

  23. Firsov, M.L., Donner, K. & Govardovskii, V.I. pH and rate of “dark” events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise. J. Physiol. 539, 837–846 (2002).

    Article  CAS  Google Scholar 

  24. Sampath, A.P. & Baylor, D.A. Molecular mechanism of spontaneous pigment activation in retinal cones. Biophys. J. 83, 184–193 (2002).

    Article  CAS  Google Scholar 

  25. Moritz, O.L., Tam, B.M., Knox, B.E. & Papermaster, D.S. Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques. Invest. Ophthalmol. Vis. Sci. 40, 3276–3280 (1999).

    CAS  PubMed  Google Scholar 

  26. Sears, R.C. & Kaplan, M.W. Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment. Vision Res. 29, 1485–1492 (1989).

    Article  CAS  Google Scholar 

  27. Baylor, D.A., Lamb, T.D. & Yau, K.W. The membrane current of single rod outer segments. J. Physiol. 288, 589–611 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kefalov, V.J., Crouch, R.K. & Cornwall, M.C. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749–755 (2001).

    Article  CAS  Google Scholar 

  29. Kleinschmidt, J. & Dowling, J.E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J. Gen. Physiol. 66, 617–648 (1975).

    Article  CAS  Google Scholar 

  30. Xie, G., Gross, A.K. & Oprian, D.D. An opsin mutant with increased thermal stability. Biochemistry 42, 1995–2001 (2003).

    Article  CAS  Google Scholar 

  31. Cornwall, M.C., Jones, G.J., Kefalov, V.J., Fain, G.L. & Matthews, H.R. Electrophysiological methods for measurement of activation of phototransduction by bleached visual pigment in salamander photoreceptors. Methods Enzymol. 316, 224–252 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Tsina for assistance with fluorescence microscopy, V. Kefalov and G. Jones for help with electrophysiology, and C. Ding, A. Sampath and C. Makino for critical comments on the manuscript. We thank B. Tam and D. Papermaster for their time and patience in teaching us how to make transgenic X. laevis. Finally, we are especially grateful to J. Miller for retinal reattachment (D.D.O.) midway thorough the course of these studies. This work was supported by US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Carter Cornwall or Daniel D Oprian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Cornwall, M. & Oprian, D. Opsin activation as a cause of congenital night blindness. Nat Neurosci 6, 731–735 (2003). https://doi.org/10.1038/nn1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing