Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations

Abstract

Uveal melanoma (UM) is a genetically and biologically distinct type of melanoma, and once metastatic there is no effective treatment currently available. Eighty percent of UMs harbor mutations in the Gαq family members GNAQ and GNA11. Understanding the effector pathways downstream of these oncoproteins is important to identify opportunities for targeted therapy. We report consistent activation of the protein kinase C (PKC) and MAPK pathways as a consequence of GNAQ or GNA11 mutation. PKC inhibition with AEB071 or AHT956 suppressed PKC and MAPK signalling and induced G1 arrest selectively in melanoma cell lines carrying GNAQ or GNA11 mutations. In contrast, treatment with two different MEK inhibitors, PD0325901 and MEK162, inhibited the proliferation of melanoma cell lines irrespective of their mutation status, indicating that in the context of GNAQ or GNA11 mutation MAPK activation can be attributed to activated PKC. AEB071 significantly slowed the growth of tumors in an allograft model of GNAQQ209L-transduced melanocytes, but did not induce tumor shrinkage. In vivo and in vitro studies showed that PKC inhibitors alone were unable to induce sustained suppression of MAP-kinase signaling. However, combinations of PKC and MEK inhibition, using either PD0325901or MEK162, led to sustained MAP-kinase pathway inhibition and showed a strong synergistic effect in halting proliferation and in inducing apoptosis in vitro. Furthermore, combining PKC and MEK inhibition was efficacious in vivo, causing marked tumor regression in a UM xenograft model. Our data identify PKC as a rational therapeutic target for melanoma patients with GNAQ or GNA11 mutations and demonstrate that combined MEK and PKC inhibition is synergistic, with superior efficacy compared to treatment with either approach alone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Singh AD, Bergman L, Seregard S . Uveal melanoma: epidemiologic aspects. Ophthalmol Clin North Am 2005; 18: 75–84.

    Article  PubMed  Google Scholar 

  2. Egan KM, Seddon JM, Glynn RJ, Gragoudas ES, Albert DM . Epidemiologic aspects of uveal melanoma. Surv Ophthalmol 1988; 32: 239–251.

    Article  CAS  PubMed  Google Scholar 

  3. McLean IW, Saraiva VS, Burnier MN Jr. . Pathological and prognostic features of uveal melanomas. Can J Ophthalmol 2004; 39: 343–350.

    Article  PubMed  Google Scholar 

  4. Gragoudas ES, Egan KM, Seddon JM, Glynn RJ, Walsh SM, Finn SM et al. Survival of patients with metastases from uveal melanoma. Ophthalmology 1991; 98: 383–389 (discussion 390).

    Article  CAS  PubMed  Google Scholar 

  5. Van Raamsdonk C.D., Bezrookove V., Green G., Bauer J., Gaugler L., O'Brien J.M. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009; 457: 599–602.

    Article  CAS  PubMed  Google Scholar 

  6. Van Raamsdonk C.D., Griewank K.G., Crosby M.B., Garrido M.C., Vemula S., Wiesner T. et al. Mutations in GNA11 in uveal melanoma. N Engl J Med 2010; 363: 2191–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lamba S., Felicioni L., Buttitta F., Bleeker F.E., Malatesta S., Corbo V. et al. Mutational profile of GNAQQ209 in human tumors. PLoS One 2009; 4: e6833.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dorsam R.T., Gutkind J.S. . G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7: 79–94.

    Article  CAS  PubMed  Google Scholar 

  9. Hubbard K.B., Hepler J.R. . Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 2006; 18: 135–150.

    Article  CAS  PubMed  Google Scholar 

  10. Markby D.W., Onrust R., Bourne H.R. . Separate GTP binding and GTPase activating domains of a G alpha subunit. Science 1993; 262: 1895–1901.

    Article  CAS  PubMed  Google Scholar 

  11. Kalinec G., Nazarali A.J., Hermouet S., Xu N., Gutkind J.S. . Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol Cell Biol 1992; 12: 4687–4693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldsmith Z.G., Dhanasekaran D.N. . G protein regulation of MAPK networks. Oncogene 2007; 26: 3122–3142.

    Article  CAS  PubMed  Google Scholar 

  13. Mackay H.J., Twelves C.J. . Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 2007; 7: 554–562.

    Article  CAS  PubMed  Google Scholar 

  14. Griner E.M., Kazanietz M.G. . Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7: 281–294.

    Article  CAS  PubMed  Google Scholar 

  15. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. . Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847–7851.

    CAS  PubMed  Google Scholar 

  16. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. . Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 1983; 258: 11442–11445.

    CAS  PubMed  Google Scholar 

  17. Teicher B.A. . Protein kinase C as a therapeutic target. Clin Cancer Res 2006; 12: 5336–5345.

    Article  CAS  PubMed  Google Scholar 

  18. Bosco R., Melloni E., Celeghini C., Rimondi E., Vaccarezza M., Zauli G. . Fine tuning of protein kinase C (PKC) isoforms in cancer: shortening the distance from the laboratory to the bedside. Mini Rev Med Chem 2011; 11: 185–199.

    Article  CAS  PubMed  Google Scholar 

  19. Urtreger A.J., Kazanietz M.G., Bal de Kier Joffe E.D. . Contribution of individual PKC isoforms to breast cancer progression. IUBMB Life 2012; 64: 18–26.

    Article  CAS  PubMed  Google Scholar 

  20. Wu X., Li J., Zhu M., Fletcher J.A., Hodi F.S. . Protein kinase C inhibitor AEB071 targets ocular melanoma harboring GNAQ mutations via effects on the PKC/Erk1/2 and PKC/NF-kappaB pathways. Mol Cancer Ther 2012; 11: 1905–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu X., Zhu M., Fletcher J.A., Giobbie-Hurder A., Hodi F.S . The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One 2012; 7: e29622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herget T., Oehrlein S.A., Pappin D.J., Rozengurt E., Parker P.J . The myristoylated alanine-rich C-kinase substrate (MARCKS) is sequentially phosphorylated by conventional, novel and atypical isotypes of protein kinase C. Eur J Biochem 1995; 233: 448–457.

    Article  CAS  PubMed  Google Scholar 

  23. Blackshear P.J. . The MARCKS family of cellular protein kinase C substrates. J Biol Chem 1993; 268: 1501–1504.

    CAS  PubMed  Google Scholar 

  24. Heemskerk F.M., Chen H.C., Huang F.L. . Protein kinase C phosphorylates Ser152, Ser156 and Ser163 but not Ser160 of MARCKS in rat brain. Biochem Biophys Res Commun 1993; 190: 236–241.

    Article  CAS  PubMed  Google Scholar 

  25. Thelen M., Rosen A., Nairn A.C., Aderem A. . Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991; 351: 320–322.

    Article  CAS  PubMed  Google Scholar 

  26. Wagner J., von Matt P., Sedrani R., Albert R., Cooke N., Ehrhardt C. et al. Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes. J Med Chem 2009; 52: 6193–6196.

    Article  CAS  PubMed  Google Scholar 

  27. Naylor T.L., Tang H., Ratsch B.A., Enns A., Loo A., Chen L. et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas. Cancer Res 2011; 71: 2643–2653.

    Article  CAS  PubMed  Google Scholar 

  28. Johannessen C.M., Boehm J.S., Kim S.Y., Thomas S.R., Wardwell L., Johnson L.A. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nazarian R., Shi H., Wang Q., Kong X., Koya R.C., Lee H. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montagut C., Sharma S.V., Shioda T., McDermott U., Ulman M., Ulkus L.E. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008; 68: 4853–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flaherty K.T., Infante J.R., Daud A., Gonzalez R., Kefford R.F., Sosman J. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367: 1694–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lehar J., Krueger A.S., Avery W., Heilbut A.M., Johansen L.M., Price E.R. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 2009; 27: 659–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pratilas C.A., Taylor B.S., Ye Q., Viale A., Sander C., Solit D.B. et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 2009; 106: 4519–4524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Millward M.J., House C., Bowtell D., Webster L., Olver I.N., Gore M. et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer 2006; 95: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gronberg B.H., Ciuleanu T., Flotten O., Knuuttila A., Abel E., Langer S.W. et al. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 2012; 78: 63–69.

    Article  PubMed  Google Scholar 

  36. Clement-Duchene C., Natale R.B., Jahan T., Krupitskaya Y., Osarogiagbon R., Sanborn R.E. et al. A phase II study of enzastaurin in combination with erlotinib in patients with previously treated advanced non-small cell lung cancer. Lung Cancer 2012; 78: 57–62.

    Article  PubMed  Google Scholar 

  37. Bennett D.C., Cooper P.J., Hart I.R. . A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 1987; 39: 414–418.

    Article  CAS  PubMed  Google Scholar 

  38. Arita Y., O'Driscoll K.R., Weinstein I.B. . Growth of human melanocyte cultures supported by 12-O-tetradecanoylphorbol-13-acetate is mediated through protein kinase C activation. Cancer Res 1992; 52: 4514–4521.

    CAS  PubMed  Google Scholar 

  39. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H. et al. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–252.

    Article  CAS  PubMed  Google Scholar 

  40. Schonwasser D.C., Marais R.M., Marshall C.J., Parker P.J. . Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 1998; 18: 790–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ueda Y., Hirai S., Osada S., Suzuki A., Mizuno K., Ohno S. . Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 1996; 271: 23512–23519.

    Article  CAS  PubMed  Google Scholar 

  42. Solit D.B., Garraway L.A., Pratilas C.A., Sawai A., Getz G., Basso A. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    Article  CAS  PubMed  Google Scholar 

  43. Sturm O.E., Orton R., Grindlay J., Birtwistle M., Vyshemirsky V., Gilbert D. et al. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal 2010; 3: ra90.

    Article  CAS  PubMed  Google Scholar 

  44. Paraiso K.H., Fedorenko I.V., Cantini L.P., Munko A.C., Hall M., Sondak V.K. et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 2010; 102: 1724–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flaherty K.T., Infante J.R., Daud A., Gonzalez R., Kefford R.F., Sosman J. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 703: 1694–1730.

    Article  Google Scholar 

  46. Solit D.B., Rosen N. . Resistance to BRAF inhibition in melanomas. N Engl J Med 2011; 364: 772–774.

    Article  CAS  PubMed  Google Scholar 

  47. Kirkwood J.M., Bastholt L., Robert C., Sosman J., Larkin J., Hersey P. et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res 2012; 18: 555–567.

    Article  CAS  PubMed  Google Scholar 

  48. Friday B.B., Yu C., Dy G.K., Smith P.D., Wang L., Thibodeau S.N. et al. BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 2008; 68: 6145–6153.

    Article  CAS  PubMed  Google Scholar 

  49. Griewank K.G., Yu X., Khalili J., Sozen M.M., Stempke-Hale K., Bernatchez C. et al. Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell Melanoma Res 2012; 25: 182–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chou T.C. . Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant CA142873 from the National Cancer Institute and a Melanoma Research Alliance Team Science Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Emery or B C Bastian.

Ethics declarations

Competing interests

Carrie Emery, Dale Porter and Lujian Tan are employees of Novartis. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wu, Q., Tan, L. et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33, 4724–4734 (2014). https://doi.org/10.1038/onc.2013.418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.418

Keywords

This article is cited by

Search

Quick links