Overlay of conventional angiographic and en-face OCT images enhances their interpretation

BMC Ophthalmol. 2005 Jun 13:5:12. doi: 10.1186/1471-2415-5-12.

Abstract

Background: Combining characteristic morphological and functional information in one image increases pathophysiologic understanding as well as diagnostic accuracy in most clinical settings. En-face optical coherence tomography (OCT) provides a high resolution, transversal OCT image of the macular area combined with a confocal image of the same area (OCT C-scans). Creating an overlay image of a conventional angiographic image onto an OCT image, using the confocal part to facilitate transformation, combines structural and functional information of the retinal area of interest. This paper describes the construction of such overlay images and their aid in improving the interpretation of OCT C-scans.

Methods: In various patients, en-face OCT C-scans (made with a prototype OCT-Ophthalmoscope (OTI, Canada) in use at the Department of Ophthalmology (Academic Medical Centre, Amsterdam, The Netherlands)) and conventional fluorescein angiography (FA) were performed. ImagePro, with a custom made plug-in, was used to make an overlay-image. The confocal part of the OCT C-scan was used to spatially transform the FA image onto the OCT C-scan, using the vascular arcades as a reference. To facilitate visualization the transformed angiographic image and the OCT C-scan were combined in an RGB image.

Results: The confocal part of the OCT C-scan could easily be fused with angiographic images. Overlay showed a direct correspondence between retinal thickening and FA leakage in Birdshot retinochoroiditis, localized the subretinal neovascular membrane and correlated anatomic and vascular leakage features in myopia, and showed the extent of retinal and pigment epithelial detachment in retinal angiomatous proliferation as FA leakage was subject to blocked fluorescence. The overlay mode provided additional insight not readily available in either mode alone.

Conclusion: Combining conventional angiographic images and en-face OCT C-scans assists in the interpretation of both imaging modalities. By combining the physiopathological information in the angiograms with the structural information in the OCT scan, zones of leakage can be correlated to structural changes in the retina or pigment epithelium. This strategy could be used in the evaluation and monitoring of patients with complex central macular pathology.

MeSH terms

  • Choroid Diseases / diagnosis*
  • Fluorescein Angiography / methods*
  • Humans
  • Ophthalmoscopes
  • Retinal Diseases / diagnosis*
  • Tomography, Optical Coherence / methods*