A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing

J Theor Biol. 1986 Mar 21;119(2):219-34. doi: 10.1016/s0022-5193(86)80076-5.

Abstract

A model is presented outlining the molecular and cellular events that occur during the early stages of the wound healing process. The underlying theme is that there is a specific binding interaction between fibrin, the major clot protein, and hyaluronic acid (HA), a constituent of the wound extracellular matrix. This binding interaction, which could also be stabilized by other cross-linking components, provides the driving force to organize a three-dimensional HA matrix attached to and interdigitated with the initial fibrin matrix. The HA-fibrin matrix plays a major role in the subsequent tissue reconstruction processes. We suggest that HA and fibrin have both structural and regulatory functions at different times during the wound healing process. The concentration of HA in blood and in the initial clot is very low. This is consistent with the proposed interaction between HA and fibrin(ogen), which could interfere with either fibrinogen activation or fibrin assembly and cross-linking. We propose that an activator (e.g. derived from a plasma precursor, platelets or surrounding cells) is produced during the clotting reaction and then stimulates one or more blood cell types to synthesize and secrete HA into the fibrin matrix of the clot. We predict that HA controls the stability of the matrix by regulating the degradation of fibrin. The new HA-fibrin matrix increases or stabilizes the volume and porosity of the clot and then serves as a physical support, a scaffold through which cells trapped in the clot or cells infiltrating from the peripheral edge of the wound can migrate. The HA-fibrin matrix also actively stimulates or induces cell motility and activates and regulates many functions of blood cells, which are involved in the inflammatory response, including phagocytosis and chemotaxis. The secondary HA-fibrin matrix itself is then modified as cells continue to migrate into the wound, secreting hyaluronidase and plasminogen activator to degrade the HA and fibrin. At the same time these cells secrete collagen and glycosaminoglycans to make a more differentiated matrix. The degradation products derived from both fibrin and HA are, in turn, important regulatory molecules which control cellular functions involved in the inflammatory response and new blood vessel formation in the healing wound. The proposed model generates a number of testable experimental predictions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blood Coagulation
  • Cell Movement
  • Fibrin / metabolism*
  • Humans
  • Hyaluronic Acid / metabolism*
  • Inflammation / metabolism*
  • Models, Biological*
  • Wound Healing*

Substances

  • Fibrin
  • Hyaluronic Acid