X and Y cells in the lateral geniculate nucleus of macaque monkeys

J Physiol. 1982 Sep:330:125-43. doi: 10.1113/jphysiol.1982.sp014333.

Abstract

1. Cells of the lateral geniculate nucleus (l.g.n.) in macaque monkeys were sorted into two functional groups on the basis of spatial summation of visually evoked neural signals. 2. Cells were called X cells if their responses to contrast reversal of fine sine gratings were at the fundamental temporal modulation frequency with null positions one quarter of a cycle away from positions for peak response. Cells were called Y cells if their responses to such stimuli were at twice the modulation frequency and were approximately independent of spatial phase. 3. Ninety-nine percent of the cells in the four dorsal parvocellular layers of the l.g.n. were X cells; about seventy-five percent of the cells in the two ventral magnocellular layers were also X cells. The remainder were Y cells. 4. We confirmed previous findings that magnocellular cells had a shorter latency of response to electrical stimulation of the optic chiasm. 5. Magnocellular cells had much higher contrast sensitivities than did parvocellular cells. 6. Therefore, two distinct classes of X cells exist in the macaque l.g.n.: parvocellular X cells and magnocellular X cells. The great difference in their properties suggests that they have different functions in vision. The Y cells in the magnocellular layers form a third functional group with spatial properties distinctly different from the X cells. 7. We propose that the magnocellular layers of the macaque monkey's l.g.n. may be homologous to the A and A1 layers of the cat's l.g.n.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Electric Stimulation
  • Evoked Potentials, Visual
  • Geniculate Bodies / cytology
  • Geniculate Bodies / physiology*
  • Macaca / physiology*
  • Macaca fascicularis / physiology*
  • Optic Chiasm / physiology
  • Photic Stimulation
  • Visual Perception / physiology*