Progression of cochlear and retinal degeneration in the tubby (rd5) mouse

Audiol Neurootol. 1997 Jul-Aug;2(4):175-85. doi: 10.1159/000259242.

Abstract

Mice homozygous for a defect of the tub (rd5) gene exhibit cochlear and retinal degeneration combined with obesity, and resemble certain human autosomal recessive sensory deficit syndromes. To establish the progressive nature of sensory cell loss associated with the tub gene, and to differentiate tub-related losses from those associated with the C57 background on which tub arose, we evaluated cochleas and retinas from tub/tub, tub/+, and +/+ mice, aged 2 weeks to 1 year by light and electron microscopy. Cochleas from mice of all three genotypes show progressive inner (IHC) and outer hair cell (OHC) loss. Relative to tub/+ and +/+ animals, however, tub homozygotes show accelerated OHC loss, affecting the extreme cochlear base (hook region) by 1 month, and the apex by 6 months. IHC loss in tub/tub animals is accelerated in the basal half of the cochlea, affecting the hook region by 6 months. Spiral ganglion cell losses were observed only in tub/tub mice, and only in the cochlear base. Retinas of tub/tub mice are abnormal at maturity, exhibiting shortened photoreceptor outer segments by 2 weeks, and progressive photoreceptor loss thereafter. Because the tub mutation causes degeneration of sensory cells in the ear and eye but has no other neurological effects, tubby mice hold unique promise for the study of human syndromic sensory loss.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cochlea / pathology*
  • Hair Cells, Auditory / pathology
  • Hearing Loss, Sensorineural / genetics
  • Hearing Loss, Sensorineural / pathology
  • Homozygote
  • Mice
  • Neurons, Afferent / pathology
  • Photoreceptor Cells / physiology
  • Point Mutation
  • Retinal Degeneration / pathology*
  • Spiral Ganglion / pathology
  • Syndrome