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ABSTRACT
The cone dysfunction syndromes are a heterogeneous
group of inherited, predominantly stationary retinal
disorders characterised by reduced central vision and
varying degrees of colour vision abnormalities,
nystagmus and photophobia. This review details the
following conditions: complete and incomplete
achromatopsia, blue-cone monochromatism, oligocone
trichromacy, bradyopsia and Bornholm eye disease. We
describe the clinical, psychophysical, electrophysiological
and imaging findings that are characteristic to each
condition in order to aid their accurate diagnosis, as well
as highlight some classically held notions about these
diseases that have come to be challenged over the
recent years. The latest data regarding the genetic
aetiology and pathological changes observed in the cone
dysfunction syndromes are discussed, and, where
relevant, translational avenues of research, including
completed and anticipated interventional clinical trials,
for some of the diseases described herein will be
presented. Finally, we briefly review the current
management of these disorders.

INTRODUCTION
The cone dysfunction syndromes (CDS) are a
collection of heterogeneous inherited conditions,
both in terms of their clinical characteristics and
molecular genetic basis. They represent an import-
ant cause of lifelong visual impairment, with inher-
ited retinal disorders being the second commonest
cause of legal blindness in childhood and the
leading cause among the working-age population in
England and Wales.1 CDS have varying modes of
genetic inheritance and have been classically
described as stationary conditions in contrast to the
progressive cone dystrophies.2 3

Clinically, CDS are characterised by presentation
at birth/early infancy with visual loss and variable
degrees of colour vision abnormalities, nystagmus
and photophobia, all of which reflect the dysfunc-
tion of the foveally concentrated cone cells that
constitute approximately 5% of human photore-
ceptors. Given that these disease characteristics
have an early onset and severely impair important
behaviours of daily living such as facial recognition,
reading and daylight vision, the consequent debili-
tating impact on patients’ lives is considerable.
In this review, we describe the phenotypic and

genotypic features of CDS (excluding those solely
of colour vision deficiency), including complete
and incomplete achromatopsia (ACHM), blue-cone
monochromatism (BCM), oligocone trichromacy
(OT), bradyopsia and Bornholm eye disease (BED)
(table 1). Given the new era of gene therapy inter-
ventions in human retinal disease,4 we will also

briefly review the management and latest progress
towards developing effective treatments.

CONE DYSFUNCTION SYNDROMES
Complete achromatopsia
Complete ACHM (syn. typical ACHM or rod mono-
chromatism) is an autosomal-recessive condition
associated with a lack of cone function,5 which
affects about 1 in 30 000 people.2 It is characterised
by presentation at birth/early infancy with pendular
nystagmus, poor visual acuity (approximately loga-
rithm of the minimum angle of resolution (logMAR)
1.0), a lack of colour vision and marked photopho-
bia/hemeralopia. Patients may also demonstrate para-
doxical pupillary constriction when transitioned
from light to dark ambient conditions; the so-called
Flynn phenomenon.6 Electroretinography (ERG)
typically demonstrates absent cone responses and
normal rod responses,7 8 and psychophysical testing
also reveals normal rod function but absent cone
function.9 Hypermetropic refractive errors are
common10 and fundus appearance is often normal,
although macular changes can be observed that range
from subtle retinal pigment epithelium (RPE) abnor-
malities to atrophy.
To date, five genes have been associated with

ACHM, all encoding components of the cone-
specific phototransduction cascade. Disease-causing
sequence variants in these genes have been esti-
mated to account for approximately 90% of
ACHM cases.11 The first discovered, and most
common, of these genes are CNGA312 and
CNGB3,13 which encode the α-subunits and
β-subunits of the cGMP-gated cation channel,
respectively. CNGB3 mutations were first identified
in a population of Micronesian islanders where the
prevalence of complete ACHM was up to 3000
times that of other general populations; this was
thought to be due to a typhoon that devastated the
island in the 18th century,14 with all affected islan-
ders able to trace their ancestry to a single typhoon
survivor.13 Mutations in these two genes account
for approximately 80% of all complete ACHM
cases.2 15–17

The most frequently identified mutation in
CNGB3 is the 1 base pair frameshift deletion
c.1148delC (p.Thr383Ile fs*13), which accounts
for >70% of CNGB3 disease-causing alleles.16–18

There is far greater allelic heterogeneity in CNGA3
disease-causing variants (over 80 described) com-
pared with CNGB3 (∼40). The majority of CNGB3
variants identified to date are nonsense mutations,
in direct contrast to the high proportion of
missense mutations observed in CNGA3, suggesting
that mutations that compromise the structural and
functional integrity of the CNGA3 α-subunits are
less well tolerated.
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Table 1 Summary of the clinical, genetic and electrophysiological characteristics of the cone dysfunction syndromes

Syndrome Prevalence
Mode of
inheritance

Typical
BCVA
(logMAR)

Typical
refractive error Nystagmus

Fundus
findings Colour vision Typical ERG findings

Functional
photoreceptors

Associated gene(s) (cytogenetic
location)

Successful
rescue of
animal
model/s

Complete achromatopsia syn.
typical achromatopsia; rod
monochromatism

1 in 30 000 Autosomal
recessive

1.0 Often
hypermetropic

Present Usually
normal

Absent Absent cone responses; often normal rod
responses

LW-cones: no
MW-cones: no
SW-cones: no
Rods: yes

CNGA3 (2q11.2)
CNGB3 (8q21-q22)
GNAT2 (1p13)
PDE6C (10q24)
PDE6H (12p13)

Yes

Incomplete achromatopsia
syn. atypical achromatopsia

Uncertain Autosomal
recessive

0.6–1.0 Often
hypermetropic

Present Usually
normal

Residual Reduced or absent cone responses; often
normal rod responses

LW-cones: possible
MW-cones: possible
SW-cones: possible
Rods: yes

CNGA3 (2q11.2)
CNGB3 (8q21-q22)
GNAT2 (1p13)

Yes

Blue-cone monochromatism
syn. S-cone monochromatism;
X-linked incomplete
achromatopsia; X-linked
atypical achromatopsia

1 in
100 000

X-linked
recessive

0.6–1.0 Often myopic Present Usually
myopic

Residual tritan
discrimination

Reduced cone responses but with preserved
S-cone responses; normal rod responses

LW-cones: no
MW-cones: no
SW-cones: yes
Rods: yes

Principal opsin array mutational
mechanisms on Xq28: (i) LCR
deletion (approx. 40% cases)
(ii) Non-homologous recombination
between OPN1LW/OPN1MW
resulting in a single gene in the
array with a subsequent
inactivating point mutation
(approximately 60% of cases)

Yes

Oligocone trichromacy Uncertain Autosomal
recessive

0.2–0.6 Equal prevalence
of myopia and
hypermetropia

Often
absent

Normal Normal Reduced or absent cone responses; normal
rod responses

LW-cones: yes
MW-cones: yes
SW-cones: yes
Rods: yes

Possibly hypomorphic variants in
the genes associated with
achromatopsia

No

Bradyopsia syn. RGS9/
R9AP-retinopathy

Rare Autosomal
recessive

0.2–0.6 Equal prevalence
of myopia and
hypermetropia

Often
absent

Normal Normal Reduced/absent cone responses; the
rod-specific ERG and the SBWF with ISI of
2 min are normal—however, the SBWF
ERG with an ISCEV standard ISI of 20 s
shows amplitude reduction, which is
progressively less severe with increasing ISI,
consistent with delayed recovery following
the flash—thereby demonstrating the need
for more extended testing than that
mandated by ISCEV in the ERG Standard
protocol

LW-cones: yes
MW-cones: yes
SW-cones: yes
Rods: yes

RGS9 (17q23-q24)
R9AP (19q13.11)

No

Bornholm eye disease syn.
X-linked cone dysfunction
syndrome with dichromacy
and myopia

Uncertain X-linked
recessive

0–0.8 Moderate to high
myopia with
astigmatism

Absent Usually
myopic

Deuteranopia
or protanopia

Reduced cone responses; normal rod
responses

LW-cones: yes, when
observed with
deuteranopia; no, when
observed with
protanopia
MW-cones: yes, when
observed with
protanopia; no, when
observed with
deuteranopia
SW-cones: yes
Rods: yes

L/M interchange haplotypes (opsin
array on Xq28)

No

BCVA, best-corrected visual acuity; ERG, electroretinography; ISCEV, International Society for Clinical Electrophysiology of Vision; ISI, inter-stimulus interval; LCR, locus control region; logMAR, logarithm of the minimum angle of resolution; LW, long
wavelength; MW, middle wavelength; SBWF, single bright white flash; SW, short wavelength; syn., synonym(s).
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Disease-causing variants have been subsequently identified in
(chronological order) GNAT2,19 which encodes the α-subunit of
transducin (10 variants identified), PDE6C,20 encoding the
α-subunit of cGMP phosphodiesterase (19 variants identified),
and PDE6H,21 which encodes the inhibitory γ-subunit of the
same enzyme (two variants identified). The genes GNAT2,
PDE6C and PDE6H each comprise <2% of ACHM
cases.19 21 22

In terms of functional and imaging assessment, there are no
generalisable differences identified between the phenotype asso-
ciated with the two most common complete ACHM genotypes
(ie, CNGA3 and CNGB3), although there is a marked degree of
phenotypic variation observed within the genotypes.18 23 24

Spectral-domain optical coherence tomography (SD-OCT)
imaging reveals a wide spectrum of photoreceptor integrity,
ranging from a continuous inner segment ellipsoid (ISe) band at
the fovea to outer retinal atrophy, and these findings have been
both qualitatively and quantitatively assessed.23–28 Adaptive
optics scanning light ophthalmoscopy (AOSLO) allows direct
visualisation of individual human cone and rod photoreceptors
in vivo,29 30 and has identified residual cone structure in the
majority of ACHM subjects imaged, although most of the cones
have reduced reflectance and many ‘dark’ spaces are observed in
the photoreceptor mosaic.23 31 32 More recently, split detection
(non-confocal) imaging techniques have been coupled with
existing AOSLO in order to visualise inner segment structure
within the majority of the aforementioned ‘dark’ spaces seen on
confocal AOSLO.33 These imaging results support the idea that
cone structure in ACHM is disrupted, but not absent, and the
degree of residual cone structure is highly variable between
patients. These observations have significant implications for
anticipated gene therapy clinical trial design in terms of patient
selection and monitoring efficacy. Although no differences have
been identified between CNGA3 and CNGB3 genotypes,23 24

there is evidence that the GNAT2 genotype may be associated
with a greater degree of preservation of outer retinal architec-
ture on SD-OCT and AOSLO assessment,32 and may retain
residual cone function.34

ACHM in humans has been classically described as a non-
progressive disease.2 7 16 35 36 Cross-sectional and longitudinal
studies have found evidence of cone cell loss and/or progression
over time,27 37–41 although this is likely to occur very slowly, to a
limited degree, and is also highly variable between patients with
no definite age-dependency or genotype association.23 24 41

Rod photoreceptor function in ACHM has been classically
described as normal,7 42 although a number of studies have now
reported abnormalities in rod-driven ERG responses13 23 37 43 44

and rod-derived dark-adaptation functions.45 46 It is not yet
clear whether a lack of functional cones might affect the rod
photoreceptors themselves47 or the neural pathways that sub-
serve them.44 48 49

Several studies have demonstrated the effectiveness of using
gene-based or alternative therapeutic approaches to restore
cone function in multiple animal models of ACHM of various
genotypes.50–54 Given these promising results in animal models
of the disease, there are plans to begin human gene replace-
ment trials in the near future. One alternative therapeutic
approach has been that of a recent phase I/II clinical study55

that delivered intravitreal ciliary neurotrophic factor to achro-
mats with biallelic CNGB3 variants; this failed to show any
enhancement of cone function, although it has been suggested
that the lack of assessment of residual cone number and place-
ment during patient selection may have been a limiting factor
in this study.56

Incomplete achromatopsia
A small subset of patients with ACHM have an incomplete form
of ACHM associated with residual colour vision as detected by
psychophysical methods57 58 and mildly better visual acuity
(logMAR 0.6–1.0) than complete achromats.2 59

The first genotype to be associated with incomplete ACHM
was CNGA3.15 43 It has been suggested that the CNGA3 geno-
type might be unique in demonstrating residual cone function,
given that most known CNGB3 and GNAT2 mutations (which
constitute the two other most common ACHM genotypes by
prevalence) result in premature termination and therefore in
truncated and presumably non-functional proteins.2 However,
both GNAT2 and CNGB3 patients have now been reported who
appear to show residual cone function, as demonstrated by psy-
chophysical tests, such as the Ishihara pseudoisochromatic colour
plates and anomaloscope colour-matching tests, and/or residual
cone ERG responses.23 34 37 60 This finding in the latter genotype
might not be entirely unexpected, given that CNGA3 subunits
alone have been shown to form functional homo-oligomeric
channels in vitro.61

Blue-cone monochromatism
This X-linked recessive condition is characterised by an absence
of long (L)- (red) and middle (M)- (green) wavelength-sensitive
cone function, the opsins for which are both encoded on the
X-chromosome, while the short (S)- (blue) wavelength-sensitive
opsin gene is located on chromosome 7.62 The prevalence is
approximately 1 in 100 000, and affected males with BCM typic-
ally present at birth/early infancy with reduced visual acuity
(logMAR 0.6–1.0), photophobia, nystagmus and are often
myopic.63 Fundus examination reveals an otherwise normal
myopic retina, but macular retinal pigment epithelial disturbance
and atrophy have been noted in older patients.64 Vision in BCM
is subserved by rod and S-cone photoreceptors alone, and conse-
quently patients retain tritan discrimination,63 which has been
reported to deteriorate with increasing illuminance.65 BCM can
be clinically distinguished from ACHM by psychophysical and
ERG assessment, with BCM demonstrating a profoundly
reduced (but detectable) photopic ERG response and a preserved
S-cone ERG,66 as well as by a corroborative family history, given
the different modes of inheritance of the two conditions, and the
often different refractive error. Nevertheless, the clinical distinc-
tion can be challenging in early infancy in a male patient and
may not be definitively made until they are old enough to under-
take detailed colour vision or ERG testing; the increased avail-
ability of genetic testing can now help to clarify the diagnosis.

The disease-causing variants in BCM fall into one of several
categories, with the first two being the principal mechanisms: (i)
a one-step pathway whereby the locus control region (LCR) is
partially or completely deleted, thereby abolishing transcription
of the opsin gene array67 (LCR is located upstream of the
L-cone opsin (OPN1LW) and M-cone opsin (OPN1MW) genes,
and controls transcription of the opsin array, resulting in only
one opsin gene being expressed in any one photoreceptor68);
(ii) a two-step mutation pathway, with the first step being non-
homologous recombination between the L-opsin and M-opsin
gene arrays resulting in a single-opsin gene in the array (often a
hybrid gene), followed by a subsequent inactivating mutation
(most commonly a missense variant) leading to a loss of func-
tional L-cones and M-cones (the C203R missense mutation in a
single L–M hybrid gene being the most frequently reported
genotype63); (iii) the deletion of an entire exon in a single-opsin
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array gene;63 69 or (iv) gene conversion transferring a mutation
between OPN1LW and OPN1MW.70

SD-OCTanalysis of patients with BCM has shown significant,
although variable, macular thinning,25 71 72 with focal ISe dis-
ruption observed in an area corresponding to the normal
S-cone-free zone.71 Despite having been traditionally described
as a stationary condition, Cideciyan et al72 noted a trend
towards increased thinning of the foveal outer nuclear layer in
older patients with BCM, and other studies have also found evi-
dence of progression in BCM.63 67 73 There is evidence that
patients with LCR deletions are more likely to have a typical
non-progressive BCM phenotype.74

Confocal AOSLO imaging has demonstrated a disrupted cone
mosaic with a reduced number of cones at the fovea (both
reflective S-cones and non-reflective L-cones and M-cones) to
that of about 25% of normal in non-LCR-related BCM, with
evidence of greater loss of cone cells in LCR deletion-related
BCM.71 72 In addition to the identification of residual cone
structure, there is also potential for intervention in the future
given the fact that gene replacement therapy in adult dichro-
matic monkeys lacking the L-opsin gene has been shown to
produce trichromatic visual behaviour75 and has also demon-
strated restoration of cone function in a rat model of BCM.76

Oligocone trichromacy
OT is characterised by severe impairment of cone function on
ERG assessment coupled with normal or near-normal colour
discrimination. It was first described in 1973 by Van Lith,77

who reported a boy that, despite his poor vision and reduced
photopic ERG responses, had nearly normal colour vision. This
was hypothesised to be due to a low number of normal func-
tioning cones (from the Greek oligos for ‘few’), which retained
their normal distribution proportions between the three cone
types, hence preserving trichromatic vision. It is believed to be
an autosomal-recessive condition, wherein patients present in
early childhood with mild photophobia, nystagmus which may
or may not be present, reduced visual acuity (logMAR 0.3–0.6),
normal fundi and normal rod responses on ERG.78 79 Cone
ERGs are markedly reduced, with ERG evidence in some cases
of predominantly inner retinal dysfunction.78 Strikingly,
however, despite these features of a CDS, colour vision is
largely within normal limits, which may result in underascer-
tainment of cases of OT. Using foveal densitometry measure-
ments, Keunen et al80 argued that these patients possessed a
reduced number of foveal cones that otherwise retained normal
function. Goldmann visual fields are normal,60 79 with reports
of generalised retinal sensitivity reduction with Humphrey static
visual field testing.81 Although believed to be predominantly sta-
tionary,77 there is some evidence that in some patients at least
there may be progression.78

The underlying molecular genetic basis remains uncertain.
OT and/or a ‘marked incomplete ACHM-like’ phenotype have
been reported in association with ‘hypomorphic’ mutations in
the ACHM genes CNGA3,81 82 CNGB3,79 PDE6C79 and
GNAT2.60 However, some of these cases arguably have features
more in keeping with incomplete ACHM per se rather than OT.
In addition, only single heterozygous missense variants have
been identified in other subjects, thereby rendering their signifi-
cance currently unclear. Nevertheless, OT is likely to be hetero-
geneous both genotypically and phenotypically,78 79 in keeping
with other CDS and inherited retinal disease as a whole. This
heterogeneity has been further elucidated by Michaelides
et al,83 who used adaptive optics (AO) and SD-OCT to assess
the integrity of the cone photoreceptor mosaic and found that

patients examined with a typical OT phenotype had a reduced
number of functional cones at the fovea with no structure
visible outside the central fovea, thereby confirming the original
hypothesis of the underlying basis of OT; whereas patients with
an OT-like phenotype had a normal cone mosaic in terms of
cone density and distribution, thus suggesting that in these latter
cases the cones present are dysfunctional. This study also identi-
fied that OTand bradyopsia (RGS9/R9AP-associated retinopathy)
cannot be distinguished on the basis of clinical findings alone,
with both being associated with normal colour vision.83

Extended ERG testing beyond International Society for Clinical
Electrophysiology of Vision (ISCEV) standard testing is needed
to identify the pathognomonic electrophysiological findings in
bradyopsia (see the following section).84–86 There is evidence
that these disorders can also be distinguished with high-
resolution AO imaging, with patients harbouring RGS9/R9AP
variants having an intact cone photoreceptor mosaic compared
to patients with OT.83 87

Bradyopsia
This condition was first reported in 1991 in four Dutch
patients, who demonstrated an abnormally long interval of sup-
pression in their ERG amplitude responses to the second of a
pair of bright stimuli flashes. This was postulated to be due to a
deficit in the normally fast regeneration of the visual pathway
signalling processes.86 The term bradyopsia (Greek for slow
vision) was devised in 2004 to describe this stationary retinal
phenotype, wherein affected patients had difficulty in adapting
to sudden changes in cone-mediated luminance levels and diffi-
culty in seeing moving objects.84 However, it is now clear that
these symptoms can also be seen in many other disorders of
cone function including OT.83 Onset is in early childhood and is
associated with delayed dark and light adaptation, mild photo-
phobia, moderately reduced visual acuity, normal colour vision
and normal fundi.85 88 89 In patients with bradyopsia, the rod-
specific ERG, the red flash ERG under dark adaptation (both an
early cone and later rod system component) and the single
bright white flash (SBWF) with inter-stimulus interval (ISI) of
2 min are all normal. The SBWF ERGs with an ISCEV standard
ISI of 20 s show amplitude reduction, which is progressively less
severe with increasing ISI, consistent with delayed recovery fol-
lowing the flash, demonstrating the need for an extended ISI to
obtain full recovery of the ERG following the previous flash.85

A generalised reduction or absence of cone responses is
observed (pattern ERG, 30 Hz flicker and photopic ERGs).85

A similar murine ERG phenotype was subsequently identified
wherein the affected mice lacked the protein RGS9. This protein
significantly accelerates the hydrolysis of the α-transducin bound
guanosine triphosphate to guanosine diphosphate, thus deactivat-
ing the enzyme cGMP-phosphodiesterase and causing a rise in
cGMP within the photoreceptor, consequently allowing the
cGMP-gated cation channels to reopen.90 A further protein,
R9AP, anchors RGS9 to photoreceptor outer segment disc mem-
branes and enhances its activity by up to 70-fold.91 Thus, RGS9
and R9AP play critical roles in enabling the rapid recovery of the
phototransduction cascade after light stimulation. Recessive
mutations in the genes encoding these two proteins, namely
RGS9 and R9AP, have since been identified in humans.84 85 88 89

To date, 1 missense84 and 1 nonsense mutation85 have been
reported in RGS9, while 5 insertions/deletions have been
reported in R9AP.84 85 88

Patients with either RGS9/R9AP-retinopathy or OT have very
similar clinical phenotypes, characterised by stationary cone dys-
function, mild photophobia, normal colour vision and normal
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fundi. However, cellular imaging may be an effective way to dis-
tinguish between these conditions: AOSLO imaging of OT
reveals a sparse mosaic of cones remaining at the fovea; in
direct contrast, RGS9/R9AP-retinopathy patients have a normal
cone photoreceptor mosaic.83 87 This is in keeping with findings
from dark-adapted flicker ERGs performed with a dim stimulus
that show a normal response initially, which becomes undetect-
able after 10 s stimulation, in RGS9/R9AP-retinopathy patients,85

suggesting that cones are not only present (as demonstrated by
AOSLO) but are capable of normal function and thus potentially
amenable to rescue.

Bornholm eye disease
BED was first described in a large family that originated from
the Danish island of Bornholm.92 Affected members displayed
X-linked recessive infantile myopia/astigmatism and impaired
visual acuity, with signs of optic nerve head hypoplasia, retinal
pigmentary changes, deuteranopia and reduced cone responses
on ERG.92 93 Since then, patients with protanopic BED have
also been identified94 95 and the disorder can now be described
as an X-linked CDS associated with myopia and dichromacy.

The condition was mapped by linkage analysis to Xq28 in the
original Danish family.93 Subsequent genetic interrogation has
shown that rare haplotypes (‘L/M interchange haplotypes’) at
polymorphic positions in exon 3 of the opsin genes, that result
from intermixing between L- and M-opsin genes, are the princi-
pal underlying genetic basis of BED.74 96 Some of these inter-
change haplotypes have been shown to result in aberrant
splicing of the opsin genes and a variable degree of exon 3
skipping.74 97

There is SD-OCT and AOSLO evidence that patients with
BED demonstrate reduced retinal thickness and a significantly
disrupted cone mosaic, although to a variable degree, and the
suggestion has been made that the number of cones expressing
the aberrant pigment (given that there can be more than a
30-fold range in the L:M cone ratio between individuals98) may
determine whether the aforementioned polymorphic opsin var-
iants lead to the generalised cone dysfunction observed in
BED.99

MANAGEMENT OF CDS
Although there are now promising results for therapeutic inter-
vention in other inherited retinal conditions in humans, and
successful rescue of animal models in some CDS has been
demonstrated, there are at present no proven treatments.
Current management includes correct diagnosis, increasingly
aided by molecular genetic testing, in order to offer accurate
prognosis and genetic counselling, as well as refractive correc-
tion, low visual aids and educational support. Tinted lenses can
help with disabling photophobia, improving both ocular
comfort and quality of vision, for example, deep red tints in
ACHM to reduce rod saturation, or magenta tints in BCM that
would in addition preserve transmission of blue light.100 An
accurate molecular genetic diagnosis is becoming increasingly
possible and pertinent, given the likely significance this will have
in directing future gene therapy. This, allied with research in
other modes of intervention such as neuroprotection and
pharmacological approaches, means that hopefully a new era is
dawning where these hitherto untreatable conditions may be
amenable to successful intervention.
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