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ABSTRACT
Orbital changes in thyroid orbitopathy (TO) result from
de novo adipogenesis, hyaluronan synthesis, interstitial
oedema and enlargement of extraocular muscles.
Cellular immunity, with predominantly CD4+ T cells
expressing Th1 cytokines, and overexpression of
macrophage-derived cytokines, perpetuate orbital
inflammation. Orbital fibroblasts appear to be the major
effector cells. Orbital fibroblasts express both thyrotropin
receptor (TSHR) and insulin-like growth factor-1 receptor
(IGF-1R) at higher levels than normal fibroblasts. TSHR
expression increases in adipogenesis; TSHR agonism
enhances hyaluronan production. IGF-1R stimulation
leads to adipogenesis, hyaluronan synthesis and
production of the chemokines, interleukin (IL)-16 and
Regulated on Activation, Normal T Cell Expression and
Secreted, which facilitate lymphocyte trafficking into the
orbit. Immune activation uses a specific CD40:CD154
molecular bridge to activate orbital fibroblasts, which
secrete pro-inflammatory cytokines including IL-1β,
IL-1α, IL-6, IL-8, macrophage chemoattractant protein-1
and transforming growth factor-β, to perpetuate orbital
inflammation. Molecular pathways including adenylyl
cyclase/cyclic adenosine monophosphate,
phophoinositide 3 kinase/AKT/mammalian target of
rapamycin, mitogen-activated protein kinase are involved
in TO. The emergence of a TO animal model and a new
generation of TSHR antibody assays increasingly point
towards TSHR as the primary autoantigen for
extrathyroidal orbital involvement. Oxidative stress in TO
resulting from imbalances of the oxidation-reduction
state provides a framework of understanding for smoking
prevention, achieving euthyroidism and the use of
antioxidants such as selenium. Progress has been made
in the understanding of the pathogenesis of TO, which
should advance development of novel therapies targeting
cellular immunity, specifically the CD40:CD40 ligand
interaction, antibody-producing B cells, cytokines, TSHR
and IGF-1R and its signalling pathways. Further studies
in signalling networks and molecular triggers leading to
burnout of TO will further our understanding of TO.

INTRODUCTION
Thyroid orbitopathy (TO) is an autoimmune
inflammatory disorder involving the orbit. Ninety
per cent of patients with TO have Graves’ disease
(GD) and are hyperthyroid, 5% are hypothyroid
and another 5% are euthyroid.1 2 Many patients
with TO develop eye symptoms within the first
18 months of autoimmune thyroid disease, with
13% of patients presenting beyond 2 years, and 3%
preceding the diagnosis of GD by >12 months.3 4

In the USA, the age-adjusted incidence rate of
TO was 16/100 000 population/year in females and

2.9 cases/100 000/year in males.1 When only
moderate-to-severe TO is considered, the incidence
rate reduces to 16.1 cases/million/year, regardless
of salt iodinisation.5 Predicted prevalence rates of
TO are stable across different countries, ranging
from 0.1% to 0.3%.6 In newly diagnosed GD,
20% have mild and inactive TO, 5.8% present with
moderate to severe, active TO and 0.3% develop
compressive optic neuropathy in a non-tertiary
setting.7 The evidence is strong for the association
of smoking and TO; smokers have an increased
risk for TO, and severity of TO correlates with
smoking in a dose-dependent manner.8 9–11 In add-
ition, uncontrolled hypothyroidism and hyperthy-
roidism, and radioactive iodine therapy have been
associated with development of TO in clinical
studies.12–14 Cessation of smoking, achievement of
euthyroidism and prophylactic oral prednisolone
prior to radioactive iodine therapy in at-risk
patients form important preventive steps to control
these modifiable risk factors for TO.15–17

Recent advances in transcriptomics and proteo-
mics have brought new insights into the molecular
basis of TO. These discoveries have led to the
emerging use of monoclonal antibodies and will
undoubtedly eventually lead to more specific ther-
apies for this challenging condition. This review
explores the underlying molecular mechanisms of
TO, highlighting the basis for emergent prevention
and treatment options.

PATHOLOGICAL CHANGES IN TO
Pathological changes of TO in the orbit appear to
involve both the extraocular muscles and the
orbital fat compartments, with CT indicating most
patients have a mixture of both extraocular muscle
enlargement and orbital fat expansion.18 Proptosis
is due to expansion of orbital tissue within the
unyielding confines of the bony orbit. The conse-
quent increase in orbital pressure can also lead to
venous outflow congestion and chronic periorbital
oedema.19

Histological examination of affected extraocular
muscles shows extraocular muscle enlargement is
due to deposition of glycosaminoglycan (GAG),
predominantly hyaluronan (HA) within the
muscles’ endomysial space.20 Total orbital GAG in
TO is markedly elevated with significant increase in
chondroitin sulfate and HA; correspondingly 24 h
urinary total GAG, dermatan sulfate and HA are
also elevated in TO compared with normal con-
trols.21 22 HA from orbital cells is primarily
>500 000 Da high-molecular-weight polymers.23

As HA is highly anionic, intense water binding
leads to pronounced orbital interstitial oedema and

142 Khong JJ, et al. Br J Ophthalmol 2016;100:142–150. doi:10.1136/bjophthalmol-2015-307399

Review
 on A

pril 10, 2024 by guest. P
rotected by copyright.

http://bjo.bm
j.com

/
B

r J O
phthalm

ol: first published as 10.1136/bjophthalm
ol-2015-307399 on 13 N

ovem
ber 2015. D

ow
nloaded from

 

http://crossmark.crossref.org/dialog/?doi=10.1136/bjophthalmol-2015-307399&domain=pdf&date_stamp=2015-11-13
http://bjo.bmj.com
http://bjo.bmj.com/


extraocular muscle expansion without disruption of muscle
fibres.20 21 23

Furthermore, histology of extraocular muscles shows diffuse
and focal lymphocytic infiltrates and fibrosis, whereas orbital fat
and connective tissue contains few infiltrating cells. The major-
ity of mononuclear cells are T cells, along with a few B cells,
macrophages and mast cells in the intercellular space.24 25

Macrophages, monocytes and mast cells are also located in the
perivascular interstitial space and in between fibroblast cells
with co-localisation of platelet-derived growth factors in the
orbital tissue.26 27

EFFECTOR CELL IN TO
Current evidence suggests the orbital fibroblast is the key
effector cell in TO.28 Not only do orbital fibroblasts proliferate
and differentiate into myofibroblasts and adipocytes, they
produce GAG in excess, undergo adipogenesis and actively
interact with mononuclear cells, produce chemoattractants and
cytokines, which ensure perpetuation of orbital inflamma-
tion.26 29–31 Most of our understanding of orbital fibroblasts in
the pathophysiology of TO is derived from in vitro culture
studies. Orbital fibroblasts and pre-adipocyte cultures when sub-
jected to differentiation medium underwent adipogenesis with
increased peroxisome proliferator-activated receptor-γ (PPAR-γ)
transcripts and lipoprotein lipase (LPL) expression, accompanied
by increased HA production and hyaluronic acid synthase 2
(HAS2) mRNA transcripts.32 Interleukin (IL)-1β and leukoregu-
lin stimulate a marked increase in HA secretion in TO orbital
fibroblasts.23 33 34 Activated orbital fibroblasts from TO showed
a robust response to pro-inflammatory cytokines compared with
normal controls and secrete higher levels of pro-inflammatory
cytokines including IL-1α, IL-1β, IL-6, IL-8, macrophage
chemoattractant protein-1 (MCP-1), transforming growth factor
(TGF)-β when stimulated by cytokines and growth factors.35–38

Heterogenous presentations of TO could be due to cellular
divergence of orbital fibroblasts within the orbit.31 The fibro-
blast populations in the orbit are phenotypically heterogeneous
and differ with regard to surface glycoprotein, production of
pro-inflammatory cytokines and cell surface receptors.36 39 40

The perimysial orbital fibroblasts uniformly express Thy-1,
whereas adipose tissue orbital fibroblasts show bimodal distribu-
tion of both Thy-1-positive and Thy-1-negative cells.39 40 Both
Thy-1-positive and Thy-1-negative fibroblasts express high levels
of PPAR-γ but only the Thy-1-negative adipose orbital fibro-
blasts differentiate and accumulate lipid droplets.40 On the
other hand, only Thy-1-positive orbital fibroblasts can differen-
tiate into myofibroblasts on stimulation with TGF-β.41

The innate depot differences in fibroblasts may also explain
the predilection for orbital and pretibial extra-thyroidal involve-
ment in GD. Adipogenesis and HA synthesis in orbital pre-
adipocytes and fibroblasts is site specific, occurring in both TO
and normal controls.32 Regional differences exist in basal
PPAR-γ expression and responses of human pre-adipocytes to
PPAR-γ and retinoid X receptor α agonists.42 Orbital fibroblasts
also express considerably higher IL-6 and IL-6 receptor, and
prostaglandin E2 (PGE2) than dermal fibroblasts when induced
by IL-1β and leukoregulin, respectively.43 44

MOLECULAR MECHANISMS UNDERLYING TO
The molecular mechanisms whereby recruitment of immune
cells into the orbit, the molecular bridge between immune cells
and orbital fibroblasts, molecular pathways leading to prolifer-
ation and differentiation of orbital fibroblast, secretion of HA,

adipogenesis and perpetuation of orbital inflammation are now
better understood (figure 1).

Cellular immunity
T cell infiltrates in TO orbital tissues are predominantly CD4+,
with some studies suggesting presence of both CD8+ and CD4+
T cells.45–48 Th1-like cytokine profile predominates in TO retro-
bulbar tissue.45 48 Th1-like cytokine expression profile consisting
of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-1β and
IL-6 has been detected mainly in TO extraocular muscles,
whereas IL-4 and IL-10, Th2-type cytokines were detected pre-
dominantly in orbital fat.38 Predominance of Tcell subsets is also
disease duration dependent, with Th1 cells dominating in the
active phase of TO, shifting towards Th2 cells in the late phase.49

Proliferation of orbital fibroblasts is activated by interaction
of autoantigens on the fibroblasts with T cells that involve
contact of T cell receptor with Major histocompatibility
complex class II molecule and CD40:CD154 signalling.30

Co-culture of orbital fibroblasts with autologous T cells stimu-
lates production of MHC II molecule and proliferation of
orbital fibroblasts in a dose-dependent manner; blocking anti-
bodies to MHC II, CD40 and CD40 ligand (CD154) com-
pletely inhibit proliferation of orbital fibroblasts.30 CD40
expression is upregulated in orbital fibroblasts by IFN-γ
mediated through Jak2.36 Ligation of CD40 with CD154
induces increased secretion of intercellular adhesion molecule-1
(ICAM-1),50 nuclear translocation of nuclear factor-κβ
(NF-κβ),51 IL-6, IL-8 and MCP-1 in TO orbital fibroblasts com-
pared with normal controls.36 In addition, CD40 upregulates
IL-1α secretion, HA and PGE2 synthesis.52 The molecular sig-
nalling triggered by CD40:CD154 ligation involve all three
mitogen-activated protein kinase (MAPK) pathways, p38,
ERK1/2 and JNK, which mediate cellular activities such as gene
expression, cellular proliferation, differentiation and apoptosis.
ICAM expression is predominantly P38 MAPK and NF-κβ
dependent, whereas ERK1/2 and JNK also activate the NF-κβ
pathway, a transcription factor pathway that regulates genes
involved in immune and inflammatory responses.50

Role of cytokines
Study of the cytokine profile in orbital adipose tissue in TO and
normal individuals shows overexpression of IL-1β, TNF-α,
IFN-γ, IL-6 and IL-10, which are macrophage-derived and IL-8.
IL-1β is expressed the most differentially.37 Similarly, patients
with active TO have higher IL-1β, IL-6, IL-8 and IL-10 com-
pared with inactive TO.53 Orbital fibroblasts from TO when sti-
mulated by IL-1β upregulate secretion of pro-inflammatory
cytokines IL-6 and IL-8, PGE2, IL-6R and T cell chemoattrac-
tants, IL-16 and Regulated on Activation, Normal T Cell
Expression and Secreted (RANTES), which recruit T cells into
the orbit.39 43 44 54 IFN-γ upregulates CD40 expression on
orbital fibroblasts and fibrocytes.55 IL-6 increases the expression
of thyrotropin receptor (TSHR) in orbital fibroblast pre-
adipocytes and promotes B cell differentiation and immuno-
globulin production.56 57 IL-1β uses p38 and ERK1/2 MAPK
pathways to induce IL-6 gene expression.43 Immunoglobulin G
from patients with GD substantially upregulates RANTES and
IL-16, AKT/FRAP/mammalian target of rapamycin (mTOR)/p70
pathway is implicated in the induction of IL-16.54

HA synthesis
IL-1β, leukoregulin, CD154, TGF-β1 and platelet-derived
growth factor (PDGF) are all involved in stimulating HA synthe-
sis, likely via receptor and ligand binding on the orbital
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Figure 1 Model of pathogenesis of thyroid orbitopathy (TO). T cell interacts with orbital fibroblast via CD40:CD154 ligation, and interaction of
Major histocompatibility complex class II (MHC II), autoantigen and T cell receptor activate orbital fibroblast with increase secretion of intercellular
adhesion molecule-1 (ICAM-1), nuclear translocation of nuclear factor (NF)-κβ, interleukin (IL)-1, IL-6, IL-8, macrophage chemoattractant and
prostaglandin E2 (PGE2) secretion. Cytokines showed Th1 dominance with increase IL-1β, interferon (IFN)-γ, tumour necrosis factor (TNF)-α and IL-6.
IFN-γ increases CD40 expression, IL-6 modulates B cell immunoglobulin (Ig) secretion. Orbital fibroblast upregulates pro-inflammatory cytokines
IL-1β, transforming growth factor (TGF)-β, leukoregulin that perpetuate orbital inflammation and increase hyaluronan (HA) synthesis. TGF-β induces
myofibroblast proliferation and differentiation and promotes lymphocyte adhesion and chemotaxis by CD44 and HA interaction. IgG from Graves’
disease (GD) and insulin-like growth factor-1 (IGF-1) upregulates secretion of Regulated on Activation, Normal T Cell Expression and Secreted
(RANTES) and IL-16, which increase T cell migration into the orbit; the AKT/mammalian target of rapamycin (mTOR)/P70 pathway seems involve in
IL-16 upregulation. Activating thyrotropin receptor (TSHR) increases hyaluronan synthase (HAS) via adenyl cyclase/cyclic adenosine monophosphate
(cAMP) and AKT/phophoinositide 3 kinase (PI3K) pathway. IGF-1 can also induce HAS and HA synthesis, the effect is unmasked by mitogen
activated protein kinase (MAPK) inhibitor. Both TSHR and IGF-1R activate PI3K/AKT pathway to upregulate peroxisome proliferator-activated
receptor-γ (PPAR-γ) expression, differentiation and proliferation of adipocytes and enhance adipogenesis. IGF-1R uses Src homology 2 domain-
containing (SHC)/insulin receptor substrate (IRS)/MAPK signalling to increase proliferation of pre-adipocytes. Switching off proximal SHC signalling
on MAPK in turn permit differentiation of pre-adipocyte to adipocytes and enhance adipogenesis.
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fibroblast.26 34 35 58 Orbital fibroblast surface receptors for
TSHR and insulin-like growth factor-1 receptor (IGF-1R) both
appear to stimulate HA synthesis. TSHR activation alone is suf-
ficient to upregulate expression of HAS1 and HAS2 and HA
production via cyclic adenosine monophosphate (cAMP) and
AKT/phophoinositide 3 kinase (PI3K) signalling with upregula-
tion of HA production.23 59 60 On the other hand, both
immunoglobulin G (IgG) from GD and IGF-1 stimulate an
equivalent and substantial increase in HA synthesis in orbital
fibroblasts, suggesting alternative IGF-1R pathways are also
involved in HA synthesis.61 62 However, the effect of IGF-1 on
HA synthesis appears indirect as IGF-1 alone does not increase
HAS2 transcription. The stimulatory effect of IGF-1 on HAS
transcription is unmasked by MAPK kinase inhibitor but not
mTOR or PI3K inhibitors in orbital fibroblasts.32

IL-1β is a potent stimulator for GAG synthesis. Increased
secretion of HA in TO orbital fibroblasts by IL-1β is due to pre-
dominant induction of HAS2, and to a lesser extent, HAS3.
The effects of HAS mRNA induction by IL-1β can be inhibited
by glucocorticoids.33 PDGFβ and TGF are growth factors that
are significantly increased in TO orbital tissues. They induce
orbital fibroblast proliferation and stimulate HAS1 and HAS2
expression in TO orbital fibroblasts.35 58 TGF-β acts via the
Smad pathway.35 TGF-β-treated orbital fibroblasts also bind acti-
vated human T cells through HA-CD44 interaction, thus pro-
moting lymphocyte chemotaxis and adhesion to
pro-inflammatory sites.58 Addition of PPAR-γ ligands, on the
other hand, inhibits TGF-β-induced HAS1 and HAS2 expres-
sion and attenuate HA synthesis independent of the PPAR-γ
pathway.58

Adipogenesis
De novo adipogenesis is enhanced in TO as evidenced by
increased expression of adipocyte-specific genes leptin, adipo-
nectin, fatty acid synthase, adipocyte fatty acid binding protein
(AP2) and PPAR-γ mRNA in TO-affected adipose tissue com-
pared with normal orbital tissue.63 64 Microarray studies
provide further evidence that adipocyte-related intermediate
early genes, including CYR61, are overexpressed in active TO.65

PPAR-γ is a potent stimulator for adipogenesis in TO, evident
by increased expression of PPAR-γ in active TO adipose tissue
compared with normal controls.66 PPAR-γ agonist, rosiglitazone,
increases TSHR expression, PPAR-γ mRNA and cAMP levels by
2.6–4.7-fold, resulting in adipogenesis in TO orbital fibroblasts
both by proliferation and differentiation of adipocytes.67

Signalling for adipogenesis has been shown to involve both
TSHR and IGF-1R. It appears both TSHR and IGF-1R share
the same intracellular AKT/PI3K signalling to affect adipogen-
esis. The close relationship of TSHR and IGF-1R in triggering
adipogenesis in TO perhaps could be explained by
co-localisation of these two receptors on orbital fibroblasts.68

Stimulatory TSHR antibody increases phosphorylated AKT
protein, cAMP levels and enhanced adipogenesis via the PI3K
signalling cascade.69 On the other hand, IGF-1 mediates prolif-
eration and differentiation of human and murine 3T3-L1 pre-
adipocytes into adipocytes.70 71 IGF-1 mediates its effect by
binding to IGF-1R and induces phosphorylation of Src hom-
ology 2 domain-containing protein (Shc) and insulin receptor
substrate (IRS) and downstream AKT/PI3K pathway.71 72 IGF-1
uses Shc/IRS-1 to activate MAPK/ERK signalling in proliferating
3T3-L1 pre-adipocytes. Inhibiting MAPK by Shc proximal sig-
nalling switches off proliferation of pre-adipocytes and in turn
permits differentiation into adipocytes with increased expression
of PPAR-γ, LPL and AP2.73

AUTOANTIGENS IN TO
TSH receptor
Breaking of self-tolerance to TSHR on thyroid epithelial cells,
resulting in TSHR stimulating antibodies inducing thyrotoxi-
cosis, is well established in GD.74 75 TSHR signals mainly by
two G-protein mediated pathways: the adenylyl cyclase/cAMP
pathway and the PI3K/AKT/mTOR pathway.76 Evidence from
the temporal correlation of TO and GD, emerging TO animal
models and correlation of disease activity and TSHR antibody
increasingly point towards TSHR as the primary autoantigen
in TO.

The observation that onset of TO is frequently within
18 months of diagnosis of GD4 raised early on the concept that
the two clinical entities are triggered by a common autoantigen.
The first evidence of TSHR as an autoantigen came from identi-
fying TSHR expression in retro-orbital tissue in cultured orbital
fibroblast from patients with TO by PCR and liquid hybridisa-
tion.77–79 Of note, the level of TSHR expression on orbital
fibroblast is only of low abundance compared with thyrocytes
but increases during adipogenesis and in active TO.67 80

With improvement of TSHR assays, both thyroid binding
inhibiting Ig (TBI) and thyroid stimulating Ig (TSI) TSHR titres
are shown to be highly and significantly correlated with activity
and severity of TO, thus inferring TSHR antigen is pathogenic
in TO.81 The newer chimeric TSHR and cAMP response
element-dependent luciferase MC4/TSI assay has higher sensi-
tivity (97%) and specificity (89%) than the current TBI assay
(77% and 43%, respectively) in TO.82 The new MC4/TSI assay
correlates strongly with clinical activity and clinical severity
scores in both adults and children.82 83 In the uncommon
patients with euthyroid TO, TSHR antibody was highly detect-
able at 93.8% using third-generation TSI assay and 81.3% in
second-generation TBI assay in comparison to the low TSHR
positivity (18.8%) in first-generation assays.84 Therefore,
insensitivity of earlier TSHR assays seems likely to explain the
seemingly poor correlation of TSHR antibody with severity of
TO seen in the past.

IGF-1R
IGF-1R is a ubiquitous cellular surface heterotetrametric recep-
tor involved in diverse cellular responses including modulation
of apoptosis, enhancing cell survival, growth and cellular prolif-
eration, cell motility and migration.68 85 Evidence suggests
IGF1/IGF-1R is involved in the pathogenesis of TO, but the
autoantigenic role of IGF-1R remains controversial. IGF-1R reg-
ulates lymphocyte trafficking in the orbit, HA synthesis, adipo-
genesis and defines T-lymphocyte and B-lymphocyte phenotypes
and function.86 IGF-1R levels are three fold higher on TO com-
pared with control fibroblasts.68 IgG from patients with GD
induces IL-16 and RANTES secretion mediating T cell migra-
tion.54 These effects are shown to be induced by IGF-1 and
IGF-1R-specific ligand, Des(1–3) IGF-1 analogue, but not
TSH.87 Moreover, upregulation of IL-16, RANTES secretion
and HA synthesis was restricted to GD orbital and dermal fibro-
blast and was not observed in normal control fibroblasts.
Interfering with IGF1-R function completely abolished signal-
ling induced by IgG from GD, hence implying IGF-1R is a self-
antigen mediating T cell migration, lymphocytes infiltration and
HA synthesis in TO.61 87 A recent case–control microarray
study also showed differentially expressed genes are dominated
by IGF-1 signalling genes, with significant upregulation of
IGF-1, IGF-1 signalling genes SOCS3 and SGK-1 (PDK/AKT sig-
nalling) and downregulation of IRS2 and IGFBP6 in TO.88
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It is now clear that once an IGF-1R antibody assay became
available that IGF-1R antibody is present in both patients with
GD and healthy controls. The prevalence of IGF-1R antibody
in patients with TO and healthy controls is similar (11% in
normal and 14% in TO), and there is no correlation of clinical
activity score or severity of TO with IGF-1R antibody level; ele-
vated IGF-1R antibody levels in TO also remain stable over
2 years.89 Furthermore, IGF-1R antibody binds IGF-1R and
interferes with IGF1-dependent receptor activation and signal-
ling; its effect is inhibitory on hepatocarcinoma and breast
cancer cells proliferation.89 Hence, these findings do not
support IGF-1R as an autoantigen in TO. On the other hand, in
an animal model, mice challenged with IGF-1α plasmid pro-
duced strong IGF-1R antibody response, but did not induce
hyperthyroidism or orbital changes.90 Conversely injection of
TSHR A subunit plasmid combined with electroporation
induces hyperthyroidism, and both TSHR stimulating antibody
and IGF-1R antibody.90

EMERGING TO ANIMAL MODEL
Almost all animal models of GD use in vivo expression of
TSHR either by transfected cells, plasmid or adenovirus. TSH
subunit A seems to initiate the autoimmune response to
TSHR.91 Many animal models developed for GD develop
hyperthyroidism but fail to show TO manifestations. One that
did induce orbital pathology using a splenocyte adoptive trans-
fer model with observed extraocular muscle oedema, accumula-
tion of PAS-positive material, expansion of adipose tissue,
dissociation of muscle fibres, lymphocyte and mast cell infiltra-
tion was not reproducible.91–93

A breakthrough in establishing a TO animal model was
reported by Banga using TSHR A-subunit plasmid-immunised
by muscle electroporation in BALB/c mice.94 It showed orbital
remodelling with bilateral interstitial inflammatory infiltrate in
the extraocular muscle, infiltration of CD3+ T cells, F4/80+

macrophages and mast cell, orbital fibrosis, GAG deposition and
corresponding MRI changes of orbital muscle hypertrophy.
A few mice also showed predominantly expansion of retro-
orbital fat, proptosis, chemosis and congested orbital vessels.
This is by far the most representative animal model of TO.
TSHR and a lower level of IGF-1R antibodies were both
induced.94 The less expected findings were predominance of
TSH blocking antibodies, hypothyroid status and large inflam-
matory infiltrates around the optic nerve, which are not typical
of GD. Nevertheless, these findings support the pathogenic role
of TSHR in the development of TO and open the door for
investigating pathogenesis and therapeutic drugs in an animal
TO model. Interestingly using a similar protocol with a slight
alteration of the electroporation regimen in an earlier study,
TSHR plasmid induced a high frequency of hyperthyroidism
(75%), TSHR stimulating antibodies, and in some animals,
orbital connective tissue fibrosis.90

OXIDATIVE STRESS AND TO
A state of oxidative stress has been described in GD and
TO.95 96 An increase in reactive oxygen species or reduced elim-
ination of radicals by antioxidative enzymes will result in oxida-
tive damage to cell membrane with lipid peroxidation and
oxidative DNA damage, resulting in inflammation and loss of
function.97

Both 8-hydroxy 20-deoxyguanosine (8-OHdG) and malondial-
dehyde, as well as intracellular superoxide anion and hydrogen
peroxide, were significantly elevated in TO orbital fibroblast
compared with normal controls.98 The 8-OHdG urinary levels
correlate well with clinical activity score.99 These findings
suggest increased oxidative DNA damage and lipid peroxidation
may have a role in the pathogenesis of TO. Increased oxidative
stress is also noted in vivo, where lipid hydroperoxide, super-
oxide dismutase (SOD), glutathione reductase and glutathione
peroxidase are significantly elevated in orbital fibroadipose
tissue, while glutathione (antioxidant) is reduced compared with
controls. Glutathione levels are strongly negatively correlated
with the ophthalmopathy index.95

In hyperthyroid patients, achieving euthyroidism with methi-
mazole results in all markers of oxidative stress being normalised
in GD without orbitopathy, but not entirely in the TO group
where oxidative stress indices remain significantly different from
normal controls.96 Similarly, oxidative stress marked by tert-
butyl hydroperoxide initiated chemiluminescence remains high
after radioactive iodine treatment.100 Treatment with oxygen
radical scavengers and antithyroid drugs reduce hydrogen
peroxide-induced and, to a lesser degree, heat-induced 72 kDa
heat shock protein (HSP72). HSP72 is a cytosolic protein indu-
cible by heat shock and ischaemia, and its expression is
increased in autoimmune thyroid disease.101 102

Reactive oxygen species (superoxide anions and hydrogen
peroxide) induce pro-inflammatory cytokines production (IL-1β,
TGF-β1) and stimulate orbital fibroblast proliferation in a dose-
dependent manner; the proliferative effect can be inhibited by
multiple antioxidants, methimazole but not propylthioura-
cil.103 104 Free radicals are also involved in IL-1β-induced GAG
production in TO orbital fibroblasts. IL-1β increases free radical
production in both normal and TO orbital fibroblast, and stimu-
lates SOD activity in TO orbital fibroblasts. Furthermore, redu-
cing oxygen-free radicals with SOD and catalase partially
blocked IL-1β-induced GAG production.105 Nicotinamide
reverses cellular injury in the orbit by inhibiting
cytokine-induced activation in TO orbital fibroblasts.106

Table 1 Novel and potential immunotherapies in clinical and
preclinical trials for TO

Class of drugs Mechanism of action Example

CD20 monoclonal
antibody

Deplete B cells and precursor by
recognising surface CD20 marker

Rituximab110–112

IL-6 receptor
monoclonal
antibody

Binding to soluble and membrane
bound IL-6 receptor and inhibit
pro-inflammatory cytokine IL-6

Tocilizumab57

TNF-α monoclonal
antibody

Bind and block TNF-α from
interacting with cell surface TNF
receptors.

Adalimumab118

Infliximab117

Soluble TNF receptor A soluble TNF-α receptor-Fc protein
that prevent TNF-α and TNF-β from
binding to membrane bound TNF
receptors

Etanercept116

Small-molecule
TSHR antagonist

Binding within transmembrane
region of TSHR, blocking signalling
of TSH either as allosteric inverse
agonist or neutral antagonist

Org 274179-0113

NCGC00229600114

NCGC0024259560

IGF-1R monoclonal
antibody

IGF-1R blocking, reduces both
IGF-1R and TSHR expression

Teprotumumab115

Antioxidant Increase reserve for selenoproteins
involve in oxidation reduction
activity, eg, glutathione peroxidase,
thioredoxin reductase,
iodothyronine deiodinases

Sodium selenite121

IGF-1R, insulin-like growth factor-1 receptor; IL, interleukin; TNF, tumour necrosis
factor; TO, thyroid orbitopathy; TSHR, thyrotropin receptor.
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Despite the established association of smoking with TO, the
mechanism of smoking leading to TO remains less well defined.
Cigarette smoke contains oxidants and radicals that cause oxida-
tive burden systemically,107 hence it has been proposed that
increased production of reactive oxygen species by smoking
overwhelms oxidation reduction. Smokers had significantly
higher 8-OHdG levels than non-smokers in TO, suggesting
smoking has a higher impact on oxidative stress in patients with
TO.99 Cigarette smoke extract can also stimulate HA production
and adipogenesis in a dose-related manner, and the effect on
adipogenesis is synergistic with IL-1.108

ADVANCES IN THERAPEUTIC AGENTS FOR TO
The mainstay treatments for TO have been systemic corticoster-
oids and orbital radiation for active TO, and surgical rehabilita-
tion for inactive TO until immunomodulators were trialled in
TO targeting TSHR and IGF-1R on fibroblast, inflammatory
cytokines IL-6, TNF and CD20+ B cell depletion109 (table 1).

The better studied immunosuppressive therapy for TO is
rituximab, an anti-CD20 monoclonal antibody that targets
CD20 on B cells and its precursors. A systematic review of 43
TO cases treated with rituximab showed improvement in
disease activity and severity in 91% cases, no improvement in 3
cases and worsening in 1 case.110 A randomised controlled trial
(RCT) in Europe comparing rituximab to intravenous methyl-
prednisolone in active moderate–severe TO supports effective-
ness and disease-modifying effects with 100% response rate, no
reactivation of TO at 24 weeks and less rehabilitative surgery
required at 76 weeks.111 An RCT in North America comparing
rituximab to placebo (ie, comparing to natural history) did not
show a significant difference in the improvement of disease
activity at 24 and 52 weeks, and there were more
moderate-to-severe adverse events in the rituximab group.112

The conflicting results from the rituximab RCTs could be
related to small sample sizes and require clarification with larger
RCTs.

Drug-like small-molecule TSHR antagonists are emerging as a
promising new treatment for TO and GD. M22, a small-
molecule TSH agonist, increased cAMP production in a
TSHR-transfected ovary cell line and TO orbital fibroblasts, and
the cAMP response was effectively abolished by
low-molecular-weight TSHR antagonist.113 The results were
replicated separately where small-molecule TSHR antagonists
can inhibit both basal and stimulated cAMP, pAKT and HA pro-
duction in orbital fibroblast in a dose-dependent manner.60 114

Teprotumumab, a humanised anti-IGF-1R monoclonal antibody,
is in phase II clinical trial for moderate–severe active TO.
Preliminary study shows teprotumumab can inhibit expression
of TSHR and IGF-1R on CD34+ fibrocytes and TSH-induced
IL6 and IL8 production by partially inhibiting phosphorylation
of AKT.115

Tocilizumab, a recombinant, humanised monoclonal antibody
to IL-6 receptor, has been trialled in 18 patients with active TO
refractory to intravenous steroids. Tocilizumab significantly
improved clinical activity score in all patients and disease activ-
ity remained stable up to 27 months after infusion.57 The
anti-TNF monoclonal antibodies infliximab, adalimumab and
soluble TNF receptor etanercept have been trialled in small
numbers of patients with active TO.116–118 Etanercept seems to
be effective in controlling activity of TO, leading to a marked
improvement in mainly soft tissue changes reported at 60%, but
up to 30% had recurrence of TO activity after treatment cessa-
tion.116 Adalimumab reduced inflammatory score in 6 of 10
patients, the greatest benefit being seen in active TO with severe

inflammatory signs.118 Apart from IL-6 and TNF antagonists, in
vitro use of anti-IL-1 antibody has been shown to reduce adipo-
genesis by 82% in orbital fibroblasts exposed to cigarette smoke
extract.108 Novel therapeutic options for TO show some excit-
ing developments, but large RCTs for these agents are needed
to determine both efficacy and safety profile.

Antioxidants have a promising role in the treatment of mild
to moderately active TO. In the first pilot study of antioxidant
supplementation, allopurinol and nicotinamide therapy reduce
soft tissue swelling and total eye score in 82% of patients
accompanied by high patients’ satisfaction in mild to moderately
severe TO.119 Selenium, a trace mineral incorporated into
several selenoproteins and functions as antioxidant, reduces
thyroperoxidase antibodies in autoimmune thyroiditis.120 A sub-
sequent double-blind, RCT of selenium supplemented for
6 months in TO was associated with improved quality of life,
reduced soft tissue inflammation, improved appearance and
slowed progression of TO compared with placebo.121

CONCLUSION
Cellular immunity has an important role in orbital inflammation
in TO, which involves interaction of T cells with orbital fibro-
blasts through specific receptor ligand bridges, with propagation
of multiple intracellular signalling cascades leading to secretion
of HA, adipogenesis and the release of chemotactic factors and
cytokines that ensure perpetuation of orbital inflammation. TSH
receptor appears the likely candidate as an autoantigen. IGF-1
receptor on orbital fibroblasts mediates some aspects of orbital
changes, and importantly, it has a role in adipogenesis, HA syn-
thesis and lymphocyte trafficking. Oxidative stress is increased
in TO, and the increased oxidative burden appears to potentiate
orbital inflammation, fibroblast proliferation and GAG produc-
tion. With the emergence of animal models in TO and newer
TSHR antibody assays, future studies will allow detailed evalu-
ation of the heterogenous TSHR antibodies and their effects on
TO, testing of new treatments targeting receptor ligand binding,
signalling pathways and T and B cells. Further studies in signal-
ling networks and molecular triggers that lead to burnout of TO
will improve our understanding of TO and can in turn open
future therapeutic directions.
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