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ABSTRACT
Rare genetic diseases affect about 7% of the general
population and over 7000 distinct clinical syndromes
have been described with the majority being due to
single gene defects. This review will provide a critical
overview of genetic strategies that are being pioneered
to halt or reverse disease progression in inherited
neurodegenerative diseases. This field of research covers
a vast area and only the most promising treatment
paradigms will be discussed with a particular focus on
inherited eye diseases, which have paved the way for
innovative gene therapy paradigms, and mitochondrial
diseases, which are currently generating a lot of debate
centred on the bioethics of germline manipulation.

INTRODUCTION
The genetic revolution of the past 25 years has
transformed our understanding of the genetic basis
of human neurodegenerative diseases.1 The causa-
tive genes for a large number of well-recognised
clinical entities have been identified, and the pace
of discovery will only accelerate further as next-
generation whole-genome sequencing becomes rou-
tinely available to clinicians. In addition to classical
monogenic diseases with high penetrance, it is now
clear that the majority of common late-onset neuro-
degenerative disorders are heavily determined by a
complex cluster of genetic variants, each contribut-
ing to the overall risk of developing overt clinical
disease, and in some cases having a synergistic dele-
terious interaction with environmental triggers.2 3

Unfortunately, the significant advances made in
deciphering the genetic factors that contribute to
the underlying neuropathological process have so
far resulted in limited therapeutic benefits for
patients. A number of factors have contributed to
this frustrating translational gap and the challenges
that remain are daunting.

THE BURDEN OF DISEASE
The prevalence of monogenic neurological diseases
has been estimated at 1 in 1100 in a recent epi-
demiological study, but when late-onset neurode-
generative disorders, such as Alzheimer disease and
Parkinson disease, are included, this figure increases
to 1 in 400 of the general population.4 This group
of disorders is an important cause of chronic mor-
bidity and personal suffering, and it further magni-
fies the socioeconomic impact of an ageing
population by exerting additional stress on already
stretched national health services. Treatment
remains largely supportive and so far, conventional
pharmacological approaches aimed at neuroprotec-
tion have failed to deliver effective disease-
modifying drugs. To palliate for these inadequacies,

genetic manipulation seems an obvious solution as
a radical means of correcting the primary patho-
logical process that contributes to neuronal dys-
function and disease progression.

GENE THERAPY PARADIGMS
Gene therapy is a priori perfectly suited for ‘single
gene’ neurological disorders, but some additional
criteria need to be fulfilled, namely: (1) there must
be a relatively clear understanding of the pathways
contributing to neuronal loss to ensure selection of
the most appropriate therapeutic strategy; (2) the
natural history of the disease must be clearly
defined and it must afford practical windows of
opportunity for intervention; (3) the tissue or
organ system to be targeted must be relatively
accessible; and (4) the specific cells in question
must be amenable to efficient transfection with a
suitably designed gene vector.5 6

Genetic diseases caused by recessive null muta-
tions represent the most straightforward group as
the replacement of the missing wild-type protein
should prove effective in rescuing the disease pheno-
type.7 Gene therapy for autosomal-dominant disor-
ders can be more challenging if the mechanism is
not due to haploinsufficiency, but secondary to a
gain-of-function mutant allele that produces an
aberrant protein with dominant negative proper-
ties.8 The mutant protein can either interfere with
the wild-type protein to block its normal function
or it can have a direct toxic effect on specific cellular
processes. In this scenario, simply increasing the
production of the wild-type protein with a gene
therapy replacement approach might not be able to
reverse the negative effect of a dominant
gain-of-function mutation. Despite these challenges,
Alfred Lewin and colleagues have shown in a mouse
model of autosomal-dominant retinitis pigmentosa
carrying the P23H RHO mutation that increasing
the production of normal rhodopsin can suppress
the effect of the mutated misfolded protein and
prevent photoreceptor degeneration.9 However, if
increasing the level of the wild-type protein fails to
rescue the pathological phenotype for an autosomal-
dominant disorder, the most logical strategy is to
block the expression of the mutant messenger RNA
transcript and supplement the cell with a wild-type
copy of the gene if required.10 This suppression and
replacement approach is technically more complex
as it requires a delicate balance of gene expression
to be achieved. The main experimental paradigms
for gene silencing are based on the use of antisense
oligonucleotides, ribozymes or RNA interfer-
ence.11–14

If the causative gene for a rare monogenic
disease has not been identified or the mode of
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inheritance is complex as in late-onset neurodegenerative dis-
eases, gene therapy can still be contemplated as a treatment
strategy.15 The approach in these situations involve transfecting
the cell with gene constructs that upregulate the expression of
trophic factors, which in turn serve to rescue neuronal cells
from impending death or at least prolong their survival. These
blanket neuroprotective strategies could also be used to supple-
ment more targeted gene therapy in monogenic diseases and
conceptually, these could provide a synergistic beneficial effect.
A completely novel approach for neurodegenerative diseases is
optogenetics, which involves the introduction of light-sensitive
protein sensors into neurones making them functionally photo-
sensitive.16 17 Ion channel proteins of the channelrhodopsin,
halorhodopsin and archaerhodopsins families are able to confer
these unique properties by modulating neuronal membrane
potential and the balance between depolarised and hyperpo-
larised states. Optogenetics is being used to convert non-
photosensitive retinal cells into artificial photoreceptors, and
also to deliberately switch on and off specific central nervous
system pathways in an attempt to circumvent the damaged cir-
cuitry in anatomically diseased areas.16 17

GENE DELIVERY SYSTEMS
The success of gene therapy is contingent upon an effective
delivery system and various vectors have been developed to
deliver the genetic construct, which is more commonly DNA,
but sometimes RNA.18 The use of non-viral vectors has obvious
safety advantages as they are devoid of potential immunogenic
and neoplastic side effects for the human recipient. Most of
these strategies revolve around the use of liposomes and nano-
particles to package the genetic material within a cationic lipid
or polymer protective shell.19 However, these non-viral delivery
systems have limited cargo capacity and therapeutic gene expres-
sion is usually low and transient, precluding a sustained thera-
peutic effect. The favoured alternative is a modified virus that
has a natural tropism for the central nervous system and with
the ability to integrate genetic material into the host cell’s
nuclear genome to achieve more prolonged gene expression
(table 1). The most commonly used viral vector in human clin-
ical trials, especially for ocular gene therapy, is the
adeno-associated virus (AAV).20 21 There are now long-term
safety data for these recombinant vectors and reassuringly, no
major concerns have been raised. AAV vectors are also able to
efficiently transduce non-dividing cells, which make them par-
ticularly attractive for neuronal populations. A wide variety of
AAV serotypes have been genetically engineered by altering the
proteins on the outer shell (capsid) and the DNA sequence.
These genetic modifications confer specific cellular tropism and
they also influence the onset and the intensity of transgene
expression. AAV serotype 2 (AAV2) has a natural predilection
for retinal cell types and it can induce prolonged levels of gene
expression, potentially maximising the intended therapeutic
effect. Despite their versatility, AAV vectors have a number of
disadvantages including a limited transgene capacity (4.5 kb)
and the risk of being rapidly eliminated by the humoral immune
response in patients who have previously been exposed to the
virus and possessing high circulating levels of neutralising anti-
bodies.20 21 As an alternative, lentiviral vectors have gained
increasing popularity for central nervous system disorders
because of their larger transgene capacity and their ability to
sustain high levels of gene expression, although there remains
safety concerns with regard to the potential for insertional
mutagenesis.22–24 Besides the intrinsic properties of the viral
carrier, another fundamental aspect of vector design is the use

of an appropriate promoter sequence that can efficiently drive
the expression of the transgene within the target cell.
Depending on the therapeutic aims, the viral vector can be
tailor-made with additional promoter elements that titrates the
level of gene expression or even limits its action to specific cell
types.

RETINAL NEURODEGENERATIVE DISEASES
The eye represents a target organ of choice for gene therapy as
it is easily accessible and rather advantageously, it is an immuno-
logically protected space.5 It is therefore hardly surprising that
inherited retinal diseases have led the way both in terms of pio-
neering the clinical application of gene therapy and the refine-
ment of the protocols for achieving efficient gene delivery in
vivo. Advances in minimally invasive intraocular surgery have
also made it possible for ophthalmic surgeons to safely access
various retinal layers providing a direct route for the delivery of
the gene therapy vector. We will now review some key examples
of neurodegenerative disease affecting the retinal pigment epi-
thelium (RPE), photoreceptors, and retinal ganglion cells
(RGCs) to illustrate some of the groundbreaking innovations
that have been achieved to establish gene therapy as a viable
treatment option for a broad range of ocular disorders.

Correcting gene expression
Leber congenital amaurosis (LCA) is a severe form of inherited
blindness that affects at least 1 in 50 000 children.25 26 It is gen-
etically heterogeneous and so far, 17 disease-causing genes have
been identified that account for about half of all diagnosed
cases. One group of patients harbour recessive mutations in the
RPE65 (RPE-specific protein 65 kDa) gene, which encodes for a
retinoid isomerase that is expressed almost exclusively within
the RPE layer.27 28 This specific isomerase is a key component
of the visual cycle as it converts all-trans retinoid to 11-cis
retinal for the regeneration of visual pigment after exposure to
light. LCA associated with RPE65 is a complex disease in which
vision loss results from two pathological mechanisms—dysfunc-
tion and degeneration of photoreceptors.25 26 The accumulation
of all-trans retinyl esthers has a toxic effect, causing progressive
degeneration of both rod and cone photoreceptors, and result-
ing in profound visual impairment by early adulthood.29 As the
disease process is secondary to a lack of the wild-type protein,
gene therapy aimed at augmenting RPE65 gene expression was
an obvious therapeutic target. Several preclinical studies were
initiated worldwide that substantiated this approach, in particu-
lar the seminal study by Jean Bennett and colleagues who in
2001 showed that a subretinal injection of an AAV2 vector con-
taining RPE65 cDNA could restore visual function in three
mutant RPE65−/− Briard dogs within 3 months of them being
treated.30 31 Additional work in murine models and the estab-
lishment of Good Manufacturing Practice for the production of
viral vectors led to launch of four independent clinical trials for
RPE65-LCA in the USA and in Europe. The initial reports con-
firmed the safety of injecting a bolus of an AAV2-RPE65 vector
in the subretinal space, although some investigators caution
against the fluid bleb involving the fovea to minimise the iatro-
genic loss of foveal cones and secondary retinal thinning.32–35

All the studies showed a modest improvement in a number of
visual parameters within the first month of treatment, probably
due to the partial reconstitution of the canonical retinoid cycle
within the RPE, and some patients performed better in a sub-
jective test of visual mobility. The visual benefit persisted for at
least 3 years, but there was ongoing loss of photoreceptors in
the treated retina at the same rate as that of the untreated retina,
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and on longer periods of follow-up, the comparative improve-
ment in retinal function was lost altogether.36–38 A number of
limitations have been identified from this first wave of human
clinical trials that will need to be addressed if a more robust and
prolonged treatment response is to be achieved. It is clear that
the earlier treatment is initiated the better in terms of photo-
receptor rescue, and more efficient transduction of the outer
retina will be essential to deliver a more substantial augmenta-
tion of RPE65 and sustain the visual cycle.39 Finally, although
the lack of functional wild-type protein is considered to be a
major factor driving retinal degeneration in LCA, correcting
RPE65 gene expression on its own might not be sufficient and
additional neuroprotective strategies might have to be provided
concurrently.

Another form of inherited retinal degeneration where signifi-
cant progress has been achieved recently is choroideremia,
which has an estimated prevalence of 1 in 50 000.40 It is an
X-linked disorder caused by null mutations in the CHM gene
and the lack of the encoded Rab escort protein-1 (REP1)
accounts for the neurodegenerative process.41 42 Loss of night
vision begins in the first decade of life and there is gradual loss
of peripheral vision leading to legal blindness by the fifth
decade of life. The pathological hallmark of choroideremia is
the progressive degeneration of the choriocapillaris, the RPE
and the outer retina. Patchy areas of chorioretinal atrophy begin
in the mid-periphery of the fundus and the foveal region is
spared until the end stages of the disease, affording an attractive
window of opportunity for therapeutic intervention.40 Nearly
all reported cases of choroideremia have been attributed to
functionally null CHM mutations and because the gene has a
relatively small protein coding sequence (1.9 kb), it can easily be
packaged in an AAV delivery vector. Based on promising preclin-
ical work that confirmed the effectiveness and safety of an
AAV-based strategy for delivering the CHM cDNA encoding
REP1, Robert MacLaren and colleagues initiated a first-in-man
gene therapy trial that recruited six male patients with choroi-
deremia and good central visual acuity of 6/6 or better.43–45

Although further work is needed, including longer periods of
follow-up, the initial results 6 months postsurgery showed
improved rod and cone function based on microperimetry and
visual acuity tests.45 As for LCA caused by RPE65 mutations,
this choroideremia trial further confirms the huge potential of

ocular gene therapy, which could be extended in due course to
more common retinal neurodegenerative diseases such as
age-related macular degeneration.

The encouraging results obtained for LCA and choroideremia
have led to a major surge in interest from industry and increased
collaborations with academic groups to fast-track development
pipelines. More efficient replacement vectors are currently being
developed for a broad range of inherited genetic diseases includ-
ing other genetic forms of LCA besides RPE-65, recessive forms
of Stargardt disease caused by ABCA4 mutations and achroma-
topsia secondary to CNGB3 deficiency.7 A number of research
groups worldwide are also actively working on the development
of AAV2-based gene therapy for patients with inherited optic
neuropathies.46 The two most advanced research programmes
are for recessive forms of Wolfram syndrome secondary to
WFS1 mutations and for autosomal-dominant optic atrophy
(DOA) caused by OPA1 mutations that result in haploinsuffi-
ciency.47–50 Compared with gaining access to RPE cells and
photoreceptors, RGCs form the innermost layer of the retina,
which obviates the need for a vitrectomy or direct physical
manipulation of the retina. The ability to deliver the gene
therapy vector with a minimally invasive intravitreal injection
procedure provides several advantages, in particular a much
lower risk of iatrogenic complications and a faster recovery time
for the patient. Unlike inherited retinal diseases, gene therapy
vectors for DOA and Wolfram syndrome are still in preclinical
phases of development, and a number of technical limitations
have been encountered that will need to be resolved, in particu-
lar RGC transfection efficiency and achieving the optimal gene
replacement dosage.51 The latter point is only starting to be
fully appreciated as it became apparent that supraphysiological
levels of OPA1 can, in fact, have a detrimental effect on RGC
function, at least in the mouse model that was studied.52

Allotopic gene expression
Leber hereditary optic neuropathy (LHON) is a mitochondrial
DNA (mtDNA) genetic disorder characterised by bilateral severe
visual loss secondary to the primary loss of RGCs within the
inner retina.53 54 The visual prognosis is poor with the majority
of patients remaining legally blind with visual acuities worse
than 6/60.55 About 90% of cases are due to one of three
mtDNA point mutations (m.3460G>A, m.11778G>A and

Table 1 Viral delivery systems for the treatment of neurodegenerative diseases

Characteristics
Adeno-associated
virus Adenovirus Retrovirus Lentivirus

Herpes simplex
virus

Wild-type virus Single-stranded
DNA (4.7 kb)

Double-stranded
linear
DNA (36 kb)

Diploid positive strand RNA
(9.2 kb)

Diploid positive strand RNA
(9.2 kb)

Double-stranded
linear
DNA (152 kb)

Maximum insert size 4.5 kb 7.5 kb 8.0 kb 8.0 kb 20–40 kb
Achievable titre (per ml) High (>1012) High (>1011) Low (>108) Low (>108) High (>109)
Infectivity Broad Broad Dividing cells Broad Broad
Chromosomal integration No* No Yes Yes No
Transgene expression Long (months to years) Short (days to

weeks)
Long (months to years) Long (months to years) Short (days to

weeks)
Latency in host cells No Yes No No Yes
Pre-existing immunity Yes Yes Unlikely Unlikely† Yes
Host immunological response Minimal Extensive Minimal None Moderate
Potential in vivo risks Insertional

mutagenesis*
Inflammatory
response

Insertional mutagenesis Insertional mutagenesis Inflammatory
response

*Some integration occurs, but at low frequency. The risk of insertional mutagenesis is minimal compared with other viral vectors.
†Except perhaps in patients with HIV infection.
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m.14484T>C), which affect key complex I subunits of the
mitochondrial respiratory chain, resulting in reduced ATP pro-
duction and increased levels of reactive oxygen species
(ROS).56 57 There is currently no treatment that has been con-
clusively shown to reverse the rapid loss of RGCs in the acute
phase of LHON, and the management of this disorder remains
largely supportive.58 The m.11778G>A mutation accounts for
60–70% of cases worldwide and gene therapy is being actively
pursued as a therapeutic option for this inherited form of mito-
chondrial blindness. The two main treatment paradigms are
allotopic gene expression and the enhancement of neuronal sur-
vival with various trophic factors.

Mitochondria have a double-membrane structure and this
physical barrier represents a major challenge for direct gene
therapy in LHON. An elegant solution to this problem is alloto-
pic gene expression, which involves transfecting a modified
version of the replacement gene into the nuclear genome.59 60

The modified protein that is produced has a specific targeting
sequence that allows for its efficient import into the mitochon-
drial compartment. Proof of concept was first demonstrated in
mutant LHON cybrids with the preferred viral vector being
AAV2.32 33 The ability to rescue RGCs and improve visual func-
tion was subsequently demonstrated in rodent LHON models
expressing a mutant form of the ND4 complex I subunit and
replicating the pathological consequences of the m.11778G>A
mutation.61 62 These promising in vitro and in vivo studies have
paved the way for the first clinical trials of allotopic gene
expression for patients with LHON harbouring this pathogenic
mtDNA mutation (NCT02064569 and NCT02161380). There
is still some debate whether the imported wild-type ND4
subunit does integrate into complex I of the mitochondrial
respiratory chain to produce a stable and biochemically active
unit within the inner mitochondrial membrane.63 The results of
the ongoing LHON gene therapy trials will hopefully help to
answer these controversies and more importantly, whether
patients experience a functional visual benefit using the gene
delivery vectors that have been engineered to correct for the
m.11778G>A mutation.

A complementary and possibly synergistic approach to
replacing the defective complex I subunit in LHON is to
protect RGCs against the deleterious downstream consequences
of disturbed mitochondrial function. Increased ROS levels are
considered to be a major factor driving the apoptotic loss of
RGCs in LHON.64 Superoxide dismutase is a key mediator of
the cell’s antioxidant defence mechanism and conceptually,
increasing the activity of this ROS scavenger should have a
beneficial impact on neuronal survival under unfavourable cel-
lular conditions. This principle was demonstrated convincingly
in m.11778G>A LHON cybrids with allotopic expression of
the SOD2 gene.65 The increased expression of superoxide dis-
mutase resulted in increased cell survival, and future work is
now needed to determine whether consolidating antioxidant
defences within RGCs could magnify the therapeutic potential
of correcting for the mutant complex I subunit in patients with
LHON. A radically different strategy is based on the xenotopic
expression of Ndi1, an alternative NADH oxidase expressed in
yeast (Saccharomyces cerevisiae) mitochondria.66 67 Ndi1 is a
versatile enzyme that can bypass a malfunctioning complex I to
restore downstream electron transfer while at the same time
suppressing ROS overproduction. Successful rescue of optic
nerve degeneration was achieved using the yeast Ndi1 gene in
a rat model of LHON that involved injection of rotenone-
loaded microspheres into the optic layer of the rat superior
colliculus.68

Enhancing neuronal survival
The correction of the underlying protein deficiency in mono-
genetic diseases is a logical treatment strategy that has moved
beyond the proof-of-concept stage. However, despite the major
advances in genomic medicine, the aetiology of a number of
rare or ultra-rare genetic syndromes still remain undefined, and
the genetic determinants for late-onset, sporadic neurodegenera-
tive diseases such as Parkinson disease have not been sufficiently
clarified to allow specific genetic risk factors to be targeted.69

Even if the primary genetic trigger or sequence of cellular
events that cause neuronal loss have not been defined, gene
therapy could still prove a useful tool by enhancing the local
expression of neuroprotective molecules that have consistently
proven efficacious in preclinical studies. Once more, basic
research on retinal dystrophies have paved the way with the
identification of several neurotrophic factors, for example,
ciliary neurotrophic factor, glial-cell derived neurotrophic factor
(GDNF) and brain-derived neurotrophic factor (BDNF), which
seem to arrest the pathological process irrespective of the
genetic subtype.70–72 Neurotrophic factors can diffuse away
from the cell from which they are secreted and this important
property can be used to extend their therapeutic range, espe-
cially for central nervous system disorders. This neuroprotective
treatment paradigm still needs to be refined, but encouraging
preliminary results have been obtained for Parkinson disease
with neurturin (NRTN), a structural and functional analogue of
GDNF that protects dopaminergic neurones.73 74 In a double-
blind phase II trial, 58 patients with advanced Parkinson disease
were randomly assigned, in a 2:1 ratio, to receive either a bilat-
eral injection of AAV2-NRTN into the putamen or sham
surgery.75 The primary endpoint was the change from baseline
to 12 months in the motor subscore of the unified Parkinson
disease rating scale. The treatment was well tolerated and
although the primary endpoint did not reach statistical signifi-
cance, positive results were obtained in a subgroup of patients
that had been assessed for up to 18 months. Histopathological
analysis performed on the brains of two patients who were
treated with AAV2-NRTN suggested a possible delay in the
transport of NRTN from the putamen to the substantia nigra
because of a severely degenerated nigrostriatal tract. To address
these possible study limitations, a new clinical trial is currently
underway to determine whether direct transgene delivery to the
substantia nigra, in addition to a higher dose injected into the
putamen, will prove beneficial to patients with advanced
Parkinson disease when assessed over a longer follow-up period.

Optogenetics
Optogenetics is a novel technique that involves imparting light
sensitivity onto neurones by transfecting them with bacterial
opsin genes encoding for specific ion channel proteins.76 77 The
opening of these channels is modulated by light and the flux of
ions across cell membranes creates an action potential, analo-
gous to a neurone discharging. The attraction of optogenetics
for inherited retinal diseases lies in the structured relay system
that exists with the mammalian retina, and disorders affecting
the outer retina lend themselves particularly well to visual res-
toration using this technique (figure 1). If there is complete
degeneration of the photoreceptor layer, one approach is to
render RGCs or bipolar cells light sensitive.78 The advantage of
targeting bipolar cells is that they are able to generate RGC
responses that are physiologically closer to natural activity pat-
terns. A number of studies have shown the efficacy of this
method in restoring photosensory responses and visually evoked
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neural activity in mouse models of retinitis pigmentosa, and
rather encouragingly, the treated blind mice showed improved
locomotor behaviours.79–82 Optogenetics is in an early stage of
development and in addition to achieving a sufficient level of
transfection, better targeting of transgene expression to specific
retinal cells needs to be achieved to avoid unwanted retinal
pathways from being activated. Another factor that needs to be
considered is the intensity of light and wavelength needed to
produce sufficient activation of the opsin-encoded ion channels,
but without causing long-term retinal phototoxicity.78 The
patient will be expected to wear a prosthetic device that delivers
the light stimulus to the retina and newer opsin channels with
greater photosensitivity are being developed that do not require
stimulation with the more damaging blue light spectrum.

The potential applications of optogenetics extend far beyond
inherited retinal diseases as the ability to selectively modulate
neuronal function could be used to treat central nervous system
disorders caused by an imbalance between inhibitory and excita-
tory pathways.16 83 The basal ganglia contain sophisticated
neural networks that regulate motor planning and two main
pathways with opposing actions have been described.84

According to this classical model, activation of the ‘direct’
pathway facilitates movement whereas activation of the ‘indirect’
pathway inhibits movement. The motor dysfunction in patients
with Parkinson disease is thought to arise due to a progressive
weakening of the direct pathway, driven by the loss of
dopamine-secreting nigrostriatal neurones. In a landmark paper,
Anatol Kreitzer and colleagues tested this hypothesis in a mouse
model of Parkinson disease with optogenic manipulation.84

A recombinant AAV1 virus was used to deliver

channelrhodopsin-2 and selectively target specific neuronal
populations within the basal ganglia. Remarkably, activation of
the direct pathway completely rescued deficits in freezing, bra-
dykinesia and locomotor initiation in the mutant mice.
Although still in its infancy, these exciting findings have opened
up a whole new avenue of translational research for Parkinson
disease and other neurodegenerative disorders.85

MITOCHONDRIAL NEURODEGENERATIVE DISEASES
Mitochondrial genetics
Mitochondria are ubiquitous organelles present in every
nucleated cell in the human body. A unique feature of mitochon-
dria is that they contain their own genetic material in the form of
a double-stranded circular DNA molecule, which is about 16 569
bp long.86 87 Mitochondrial DNA is a very high-copy number
genome with 2–10 mtDNA molecules in each mitochondrion,
and hundreds to thousands of mitochondria per cell depending
on its overall metabolic expenditure. As a result, two situations
can arise, namely homoplasmy or heteroplasmy. In the hetero-
plasmic state, two or more mtDNA variants are present at a spe-
cific nucleotide position, whereas in the homoplasmic, only one
mitochondrial allele exists.88 Due to its compact size, the mito-
chondrial genome has limited coding capacity for only 2 riboso-
mal RNAs, 22 transfer RNAs and 13 essential subunits of the
mitochondrial respiratory chain complexes.86 87 These encoded
gene products are absolutely critical for survival as mitochondria
provide for most of the cell’s ATP requirements through oxida-
tive phosphorylation. Nevertheless, it is important to remember
that the majority of structural and accessory components
required for normal mitochondrial function are encoded by the

Figure 1 Therapeutic application of optogenetics to retinal neurodegenerative diseases. The gene construct encodes for a photosensitive channel
protein belonging to the microbial opsin family and the preferred delivery system is an adeno-associated virus (AAV) vector due to its natural tropism
for retinal cells. An intravitreal injection is sufficient when the inner retina is being targeted, whereas delivery of the viral vector into the subretinal
space is usually needed to achieve sufficient transfection of outer retinal cells. Cell-specific promoters can be used to limit the expression of the
photoswitch gene to specific retinal cell types. The selective expression of the opsin protein is represented by the red dots within retinal ganglion
cells (RGCs) and bipolar cells. When stimulated by light of a certain wavelength, the protein channel opens, allowing the redistribution of ions
across the cell membrane. The resultant depolarisation or hyperpolarisation of the retinal cells results in the transmission of a visual impulse to the
occipital cortex via the optic nerve (http://www.gensight-biologics.com/index.php?page=optogenetics, accessed on 18 December 2015).
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nuclear genome.89 This synergistic nuclear–mitochondrial inter-
action explains why human disease can arise both from mutations
in the mitochondrial genome (primary mtDNA disorders) and
the nuclear genome (nuclear mitochondrial disorders).90

Mitochondrial diseases are now recognised as a major cause
of chronic morbidity and the minimum prevalence has been esti-
mated at 1 in 4300 in the general population.91 Reflecting the
ubiquitous nature of mitochondria and their fundamental roles
in energy production, patients with mitochondrial genetic disor-
ders often manifest a heterogeneous combination of tissue and
organ involvement, which can lead to significant diagnostic
delays.86 87 Unlike LHON which tends to be monosymptomatic
with no impact on life expectancy, a subset of patients harbour-
ing more deleterious mtDNA mutations or nuclear genetic
defects that result in severe mtDNA depletion can develop an
aggressive disease course, frequently starting in early childhood,
and characterised by irreversible encephalopathy, intractable epi-
lepsy, liver failure and multisystem organ failure. The outcome
of these mitochondrial syndromes is invariably fatal and in the
absence of effective treatments, significant effort has been
invested in developing tractable means of selectively eliminating
these pathogenic mutations through germline genome editing,
or in preventing the maternal transmission of pathogenic
mtDNA mutations from mother to child.92

Germline genome editing
There are about 2300 women of childbearing age in the UK
harbouring pathogenic mtDNA mutations and by using the

national fertility rate, nearly 150 pregnancies per year could
result in the birth of a child at high risk of developing severe
mitochondrial disease.93 Genetic counselling for prospective
mothers harbouring heteroplasmic mtDNA mutations remains
challenging as there can be rapid shifts in mitochondrial allele
frequencies due to the ‘mitochondrial bottleneck’ operating in
the early stages of oocyte development.94–96 As the majority of
mtDNA mutations cause disease when the level of heteroplasmy
exceeds 70–80%, preimplantation genetic diagnosis (PGD)
could be used to select the woman’s embryo carrying the lowest
mutant load, and therefore most likely to result in a healthy
child.97 However, there is only limited clinical experience in the
use of PGD for mitochondrial diseases and there is always the
risk that the mutation load detected in biopsied blastomeres or
trophectoderm does not accurately represent the entire embryo,
or more importantly, the level in the tissue most at risk from a
particular mtDNA mutation.98 To circumvent these difficulties,
several research groups worldwide are working on
mitochondrial-targeted nucleases that have been engineered to
selectively eliminate mutated mtDNA molecules.99–101

The principle is straightforward and it makes use of the differ-
ences in restriction sites created by the mtDNA mutation
(figure 2). Zinc finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENs) are able to recognise
these altered DNA sequences and they create double-strand breaks
that effectively eliminate the mutated mtDNA molecules.102–106

The ability to shift the level of heteroplasmy could be used to
reduce the overall mutant load in the oocyte of a woman carrying

Figure 2 Elimination of mutated mtDNA molecules with specifically designed mitochondrial nucleases. Zinc finger nucleases (ZFNs) and
transcription activator-like effector nucleases (TALENs) first need to be targeted to the mitochondrial matrix compartment where they can physically
interact with mtDNA molecules. There are a number of possible strategies, including transfecting the cell with plasmid vectors, the use of viral
vectors to deliver the gene construct or direct injection of mRNA encoding for the nuclease. The use of transiently expressed RNA in oocytes or
one-cell embryos circumvents the disadvantages of exogenous DNA administration in the germline, which remains a cause of concern with other
mitochondrial replacement techniques such as pronuclear transfer and metaphase II spindle transfer. ZFNs and TALENs can be designed to recognise
specific DNA sequences and they have the ability to create double-strand breaks that eliminate mutated mtDNA molecules. There is a transient
reduction in mtDNA copy number, but the remaining mtDNA molecules are able to proliferate, repopulating the mitochondria with a higher
proportion of the wild-type species. The end result is a beneficial reduction in the cell’s overall mutant load and an improved bioenergetic profile.
Adapted from Moraes.100
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a known pathogenic mtDNA mutation to subthreshold level,
thereby eliminating the risk of her child developing overt mito-
chondrial disease. The use of ZFNs or TALENs as a reproductive
tool for manipulating levels of heteroplasmy is still in early stages
of development and a number of technical difficulties need to be
resolved.99–101 There are still issues about the best way of deliver-
ing these nucleases to the mitochondrial matrix and safety con-
cerns need to be addressed further due to the possibility of
deleterious off-target effects in the nuclear genome. Germline
genome editing, namely with the CRISPR/Cas9 system, could also
be used to correct for pathogenic mutations within the nuclear
genome.107–109 This technology is attracting significant interest
(and debate) within the scientific community and also within the
wider public, as genetic manipulation of the germline and experi-
mentation on early human embryos raises a number of important
ethical and legal considerations.110–112

Mitochondrial replacement
The elimination of mutated mtDNA molecules to shift the level
of heteroplasmy to subthreshold level is an attractive strategy to
prevent a biochemical deficit and rescue the cellular phenotype.
However, in some mitochondrial diseases, such as LHON, the

majority of carriers harbour homoplasmic mtDNA mutations
and a different experimental strategy is needed to prevent the
transmission of a pathogenic mtDNA mutation from mother to
child.56 57 Two related in vitro fertilisation (IVF) techniques
have been developed that involves transferring the parental
nuclear genetic material into a donor cytoplast containing a
normal wild-type mtDNA population (figure 3A, B).113–115

There is minimal carryover of mutant mtDNA (<2%) with pro-
nuclear transfer and metaphase II spindle transfer, and both
methods have been shown to be compatible with normal embry-
onic development and the birth of healthy offspring in a non-
human primate model. Although encouraging, further work is
needed to explore the safety implications of these IVF techni-
ques for embryo development, including the concerns that have
been raised about epigenetic abnormalities and the possibility of
nuclear–mitochondrial genetic mismatch leading to unforeseen
negative consequences.116 117

If mitochondrial replacement is adopted for the prevention of
mitochondrial disease, the child’s entire genetic make-up will be
derived from the biological parents except for the 37 mitochon-
drial genes inherited from the female donor oocyte.118 However,
mitochondrial replacement carries important long-term

Figure 3 IVF methods to prevent the maternal transmission of mtDNA mutations. (A) Pronuclear transfer. An embryo is created via conventional in
vitro fertilisation using the father’s sperm and the mother’s oocyte, the latter carrying a homoplasmic mtDNA mutation (red mitochondria). After
fertilisation has taken place, the parental pronuclei (red circles) are removed from the single-cell embryo and they are then transferred into a
mitochondrial donor zygote harbouring only wild-type mtDNA (green mitochondria). (B) Metaphase II spindle transfer. The maternal spindle is a
structural unit that packages the mother’s nuclear DNA in the unfertilised oocyte. In this alternative approach, the intended mother’s metaphase II
spindle is transferred into a mitochondrial donor oocyte, and this is then followed by intracytoplasmic sperm injection (ICSI) fertilisation (http://blog.
wellcome.ac.uk/2012/01/20/a-good-concept-science-mitochondrial-dna/, accessed on 18 December 2015).
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implications as it involves germline manipulation transmissible to
future generations.119 There is, understandably, fierce debate on
this topic and a comprehensive public consultation exercise
involving all the major stakeholders was initiated in the UK to
discuss not only the scientific merits, but also the possible ramifi-
cations to society as a whole. The Nuffield Council on Bioethics
has concluded that mitochondrial replacement might be appro-
priate within a strictly regulated research environment, and with
the prospective parents being fully informed about the potential
risks, both real and theoretical.120 In February 2015, both
Houses of Parliament in the UK have voted strongly in favour of
mitochondrial donation to prevent the maternal transmission of
mitochondrial disease (http://www.parliament.uk/business/news/
2015/february/lords-mitochondrial-donation-si/, accessed on 18
December 2015). The clinical application is expected to begin
within the next 2 years and if approved, this procedure will be
closely monitored by the Human Fertilisation and Embryology
Authority (HFEA, UK).

CONCLUSION
The launch of the Human Genome Project in 1990 was a seminal
moment in the history of science and it started a rapid expansion
in technology that continues unabated today. More recently, the
availability of whole-exome and whole-genome sequencing in
routine clinical practice has accelerated gene discovery and the
genetic basis for the vast majority of monogenic diseases will likely
be uncovered within the next 5–10 years. There are still limited
treatments for most inherited neurodegenerative disorders and the
next crucial step now is to translate this genomic revolution into
tangible benefits for patients and their families. Gene therapy has
had many setbacks over the years, but this field of research has
matured, and there is now a much better understanding of gene
delivery systems and the pathological pathways that could be
manipulated to minimise disease burden. There is a still long way
to go as the development of gene therapy for the central nervous
system is far more challenging than for inherited retinal diseases,
which benefit from the eye’s relative ease of access and immune
privilege. Germline genome editing is an exciting technological
development that has the potential to prevent the transmission of
both nuclear and mtDNA mutations from mother to child, but
safety issues need to be rigorously addressed before it can be con-
sidered for clinical application. There is also the need for a wider
debate within society about the ethical, moral and legal implica-
tions of manipulating the germline in human embryos, and the
framework that will need to be put in place to avoid any misuse.
Genetic manipulation for inherited neurodegenerative diseases is
certainly not a myth, but a considerable amount of work is still
needed before it becomes a reality.

Correction notice This article has been corrected since it was published Online
First. The spelling ’allotropic’ was corrected to ’allotopic’ in two places within the
text.
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