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ABSTRACT
Aim To correlate light increment sensitivity (LIS) and
visual acuity (VA) with birth weight (BW), gestational
age (GA) and stage of acute retinopathy of prematurity
(ROP) (STG) in premature children at school age.
Methods 180 children (150 former prematures and 30
age-matched term-born children) were enrolled at age
6–13 years. Former prematures were categorised by the
results of the initial ROP screening based on digital
wide-field fundus imaging: absence of ROP (n=100) and
spontaneously resolved ROP (n=50). The latter group
was further subdivided according to their STG (Stg 1; Stg
2; Stg 3). Both groups were categorised into sectors by
BW (<1000 g; 1000–1500 g; >1500 g), and GA
(≤28 weeks; >28<32 weeks; ≥32 weeks). VA was
assessed with Early Treatment of Diabetic Retinopathy
Study letters, LIS was measured at 0°, 2.8° and 8° in
the visual field (Microperimeter MP1, Nidek
Technologies), and spherical equivalent refraction
assessed with a Nidek autorefractor (Nidek, Italy).
Results Central and pericentral LIS (0° and 2.8°) and
VA were significantly lower in all groups and sectors
compared with term-born controls except for BW
>1500 g for LIS and GA >28 to <32 W for VA. No
significant differences were found for LIS at 8° in all
groups. No correlation was found between LIS and VA
on an individual basis.
Conclusions Low BW, GA and increasing severity of
spontaneously resolving ROP were associated with
significantly decreased central visual function. In addition
to VA, LIS measurement further describes foveal function
and is a unique parameter to assess parafoveal function.

INTRODUCTION
Neonatal intensive care has improved dramatically
over the last 30 years, leading to increased survival
rates of preterm infants and even of those with
birth weights (BWs) <1000 g.1 The immature state
of the retina at birth in these extremely preterm
infants often results in an altered foveal morph-
ology.2–4 It remains unclear how long it lasts until
the foveal region reaches maturity and which
factors may prohibit complete foveal maturation in
extremely premature infants over time.5–8

Retinopathy of prematurity (ROP) is a typical
complication in very preterm infants with a multi-
factorial pathogenesis that is tightly related to the
immaturity of the organ system.9–11 Major risk
factors for ROP include low gestational age (GA) at
birth10 and low BWs.9 11 International committees

have developed standardised classification systems,
such as the International Classification of
Retinopathy of Prematurity in 1984, which was
revised in 2005,12 13 and the Early Treatment of
Retinopathy of Prematurity (ETROP) guidelines.14

Long-term functional consequences of prematur-
ity of the retina alone or the presence of ROP have
been analysed in several large studies, for example,
in a large population-based study in Sweden,15–19

in the Cryotherapy for Retinopathy of Prematurity
Study (CRYOROP) study20 21 or in the ETROP
study.22–24 Classic read-out parameters are visual
acuity (VA) and the prevalence of high refractive
errors, strabismus and amblyopia. Often, low BW
and GA as well as increasing severity of ROP are
risk factors for an unfavourable ocular outcome for
these parameters.25–33

However, all these parameters describe the func-
tion of photoreceptors in the centre of the fovea but
do not allow retrieval of functional information
about parafoveal or more peripheral photoreceptors.
With the advent of early retinal morphological data
in premature infants with and without ROP seen
with spectral domain optical coherence tomography
(SD-OCT), this kind of information becomes increas-
ingly interesting.34 35 Fundus-controlled perimetry
provides a measurement of the light increment sensi-
tivity (LIS) at defined loci within a 25° visual field
and has allowed to detect small deficits in visual func-
tion in the parafoveal and macular area in other
patient cohorts.36 37

The present study was launched in 2011 in order
to investigate the long-term functional and mor-
phological outcome in former preterm infants with
well-characterised retinal morphology at time of
initial ROP screening. Here, we present the results
of the functional analysis of the central retina (LIS,
VA) at school age and correlated them with ROP
risk factors at birth and presence of ROP at time of
initial ROP screening. For the first time in a large
cohort study of former premature infants, fundus-
controlled perimetry data reveal functional infor-
mation not only within the foveal centre but also in
adjacent parafoveal and macular areas.

METHODS
Patients
The present study is a long-term follow-up study of
prematurely born participants from a multicentre
field study between 2001 and 2007.38 All children
included in the present study were imaged at the
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time of the ROP screening by digital wide-field retinal imaging
(RetCam I, Massie Lab, California, USA), which provides object-
ive documentation of an eventual ROP. In the present study,
only children without apparent psychological or neuronal disor-
ders, neonatological hypoglycaemia, intraventricular haemor-
rhage or severe birth asphyxia-related hypoxic ischaemic
encephalopathy were included, and all children attended regular
schools and showed no significant deficiencies in basic literacy
and numeracy. Parents were also specifically asked as to early
childhood development and performance at school. All perinatal

data and digital fundus images were available from the original
field study.38

Healthy age-matched subjects were recruited from the local
population, who had no history of ocular abnormalities, strabis-
mus, amblyopia or high refractive errors, and who were capable
of performing all tests in this study.

Fundus-controlled perimetry
The MP1 images the fundus in real time with an infrared fundus
camera and allows with an automated tracking system

Figure 1 Light increment sensitivity (LIS) data. (A) Stimulus pattern of the data points in the visual field at 0°, 2.8° and 8° eccentricity. All points
of a given eccentricity (n=8) were added up to get a medium value and SD. (B) LIS data for the different study groups at 0°, 2.8° and 8°
eccentricity. (C and D) Correlation of LIS with birth weight (BW) at central (0°, C) and pericentral (2.8°, D) location. (E and F) Correlation of LIS with
gestational age (GA) at central (0°, E) and pericentral (2.8°, F) location. Significant correlations are marked (*corresponds to p<0.05), all other
combinations corresponds to p>0.05. no-ROP, without resolved retinopathy of prematurity; sr-ROP, spontaneously resolved retinopathy of
prematurity; Term, term-born children.
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compensating for eye movement during examination. Fixation
target and stimuli appear on a liquid crystal display within the
MP1 and are imaged back along the same optical path onto the
retina. For all conditions, background luminance was 1.27 cd/m2.
Test targets could be attenuated in steps of 1 dB (0.1 log) from
maximum brightness (127 cd/m2, defined as 0 dB for white)
down to 20 dB, that is, the background luminance. Refractive
errors were compensated within the system of the instrument.

Stimuli were presented in a slightly darkened room to the
better seeing eye at 17 positions of a customised pattern covering
the posterior pole of the retina up to 8° eccentricity (figure 1A).
The pupil was left undilated. LIS thresholds were determined
with a 4-2 staircase strategy. Results of the left eye were mirrored
along the vertical axis to be comparable to those of the right eye.

Subjects were asked to fixate a custom-made red X, 10° in diam-
eter (figure 1A). Gaps within the X allow projecting stimuli in
the centre of fixation or at parafoveal positions without interfer-
ing with the fixation target. Initially, fixation stability derived
from tracking was continuously recorded for 5 s. Thereafter, fix-
ation was recorded during stimulus presentation and mapped.
The examination started always with stimuli-sized Goldmann III
(25.7 min of arc), followed by a second examination with stimuli-
sized Goldmann I (6.45 min of arc) according to ref. 36 Because
of the ceiling effect in measurements with Goldmann III stimuli,
testing this stimulus size was used for training and familiarisation
with the test. Only Goldmann I stimuli provided reliable LIS
thresholds.36 The examination was repeated if the false positive
answers (optic-nerve head tests) reached a critical limit of 50%.

Visual acuity
The Early Treatment of Diabetic Retinopathy Study acuity charts
were used to assess VA throughout the study.39 Only one eye that
provided the best results from each participant was included.
Landolt C ring testing (a standardised procedure following the
EN ISO 8596 norm) was used as internal control. Refractive data
were assessed with a Nidek Autorefraktor (Nidek, Italy) 30 min
after application of cyclopentolate 1% eye drops.

Statistical analysis
Statistical analysis was done with Sigma Plot 12.0 (Systat
Software GmbH Erkrath, Germany). One way-analysis of vari-
ance was applied to test for significant differences among the
different ROP groups and term-born controls. Multiple com-
parison tests (Holm–Sidak or Dunn’s method) were applied
when testing for statistical differences between the groups and
sectors (BW, GA or STG). Statistical significance was assumed at
p<0.05. Pearson product moment correlation was applied when
analysing the linear dependence between VA and central LIS.

RESULTS
Patient statistics
The analysis presented here is based on the examination of 180
school-aged children (aged 6–13 years, mean 9.2 years).

Table 1 Demographic data of the study participants

Group n Age (years) (median) Sex (m/f) Birth weight (g) (±SD) Gestational age (weeks) (±SD) SER (Dpt) (±SD)

Term 30 6–12 (9) 12/18 3488 (±294) 39.8 (±1) 0.12 (±0.65)
No-ROP 100 7–13 (10) 54/46 1497 (±389) 30.7 (±2.3) 0.43 (±2.66)
<1000 g 10 7–12 (10) 6/4 917 (±80) 28.2 (±2.0) 1.02 (±3.90)
1000–1500 g 49 7–13 (10) 24/25 1299 (±124) 30.0 (±1.9) 0.43 (±2.24)
>1500 g 41 7–12 (10) 24/17 1857 (±289) 32.1 (±2.2) 0.26 (±2.71)
≤28 weeks 11 9–13 (10) 6/5 1061 (±244) 27.2 (±0.6) 0.78 (±4.24)
>28–<32 weeks 56 7–13 (10) 33/23 1441 (±257) 30 (±0.7) 0.38 (±2.67)
≥32 weeks 33 7–12 (10) 15/18 1730 (±423) 33.6 (±1.5) 0.42 (±1.99)

sr-ROP 50 7–12 (9) 29/21 1056 (±204) 27.8 (±1.8) 0.74 (±1.88)
<1000 g 23 7–12 (9.1) 11/12 789 (±83) 26.3 (±0.8) 0.93 (±1.99)
1000–1500 g 19 7–12 (8.8) 12/7 1222 (±101) 29.1 (±1.1) 1.19 (±2.13)
>1500 g 8 7–12 (9) 6/2 1618 (±105) 29.8 (±2.2) −1.55 (±2.23)
≤28 weeks 35 7–12 (9.2) 18/17 931 (±93) 26.3 (±0.9) 1.14 (±1.75)
>28–<32 weeks 15 7–12 (8.9) 11/4 1292 (±128) 29.8 (±1.5) 0.70 (±2.14)
≥32 weeks 0 – – – – –

Stg 1 21 7–12 (9.1) 12/9 1233 (±136) 28.3 (±1.7) 1.12 (±2.33)
Stg 2 21 7–12 (8.9) 12/9 938 (±87) 27.5 (±0.9) 1.07 (±2.10)
Stg 3 8 7–12 (9.2) 5/3 883 (±102) 27.0 (±0.4) 0.7 (±2.02)

No-ROP, without resolved retinopathy of prematurity; sr-ROP, spontaneously resolved ROP; SER (Dpt), spherical equivalent of refraction in diopters.

Figure 2 Correlation of light increment sensitivity (LIS) with stage of
retinopathy of prematurity (ROP). Significant correlations are marked
(*corresponds to p<0.05), all other combinations corresponds to
p>0.05. sr-ROP, spontaneously resolved retinopathy of prematurity;
Term, term-born children.
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Children born prematurely were grouped by the results of the
ROP screening at 32 weeks of postmenstrual age and subse-
quent follow-up examinations into children without apparent
ROP (no-ROP; n=100) and those with spontaneously resolved
ROP (sr-ROP; n=50). The group sr-ROP was further divided
into subgroups according to stages of ROP (Stg 1; Stg 2;
Stg 3). Of the 50 children, maximum stage 1 ROP was
detected in 21 children (zone II: n=16; zone III: n=5),
another 21 children had stage 2 ROP (zone II: n=17; zone III:
n=4) and 8 children had stage 3 ROP (zone II: n=7; zone III:
n=1; no plus). All children from both groups were also fur-
ther divided into sectors according to BW (>1500 g, 1000–
1500 g, <1000 g) and GA (≥32 weeks, >28 to <32 weeks,
≤28 weeks).

Demographic data of the enrolled participants are shown in
table 1. Both groups, no-ROP and sr-ROP, showed significant
differences among each other concerning mean BW and mean
GA, which is in accordance with the higher risk for developing
any kind of ROP at low BW and low GA. Spherical equivalent
refraction only slightly differed between the no-ROP and
sr-ROP group.

Light increment sensitivity
All children completed the examination procedure of fundus-
controlled perimetry with both Goldmann III and Goldmann I
stimuli. When comparing LIS depending on eccentricity

between the three groups, we found that the foveal LIS (0°)
was significantly lower in the no-ROP and sr-ROP-group com-
pared with the term group (figure 1B). Likewise, the parafoveal
LIS (2.8°) showed significant differences between the sr-ROP
group compared with the term group. No significant differ-
ences were found at 8° between any of the investigated groups
(figure 1B).

When analysing the impact of BW, central LIS (0°) was signifi-
cantly lower for all subjects within the sectors <1000 g and 1000–
1500 g, but was unchanged for all subjects in the sector >1500 g
compared with term-born children (figure 1C). Pericentral LIS
(2.8°) was significantly lower for all subjects within the sectors
<1000 g and 1000–1500 g, but was unchanged for the no-ROP
group in the sector 1000–1500 g and all subjects in the sector
>1500 g compared with term-born children (figure 1D). The per-
ipheral LIS (8°) remained stable und showed no significant change
to the term group (data not shown).

Concerning the impact of age, participants in the ≤28 weeks
sector had significantly reduced LIS compared with term-born
children at 0° and 2.8° (figure 1E, F).

The impact of the ROP stage on LIS is shown in figure 2. LIS
at 0° and 2.8° was significantly reduced in all subgroups com-
pared with the term-born children. Interestingly, the Stg 3 sub-
group was significantly reduced compared with both Stg 1 and
Stg 2 subgroups at 0° and significantly reduced compared with
Stg 2 subgroup at 2.8°.

Figure 3 Visual acuity (VA) data. (A) VA data for the entire groups compared with term-born children. (B) VA data for the different study groups in
relation to birth weight (BW). (C) VA data for the three different study groups relation to gestational age (GA). (D) VA data for the three study
groups in relation to stages of retinopathy of prematurity (ROP). Significant correlations are marked (*corresponds to p<0.05), all other combinations
corresponds to p>0.05. no-ROP, spontaneously resolved retinopathy of prematurity; sr-ROP, spontaneously resolved retinopathy of prematurity; Term,
term-born children.
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Visual acuity
VA was found to be significantly reduced in both groups
(no-ROP and sr-ROP) compared with term-born children
(figure 3A), but did not differ significantly among each other.

When analysing the impact of GA and BW, VA was signifi-
cantly lower in the sectors <1000 g and ≤28 weeks compared
with term-born children (figure 3B, C).

Multiple comparison analysis among the groups (no-ROP,
sr-ROP, term) and sectors (BW and GA) revealed for the sectors
<1000 g BW and ≤28 weeks GA that the affiliation to a
certain ROP group did not result in significant differences in
VA. Only the comparison against term-born children was
significant.

The analysis of the dependence of stage of ROP on VA is
shown in figure 3D. The VA in the Stg 3 subgroup was signifi-
cantly reduced compared with the term-born children and the
Stg 1 and 2 subgroups.

Correlation of central LIS and VA
Because central LIS and VA data both were reduced with
increasing immaturity of the infant and severity of ROP com-
pared with term-born children, we analysed whether these data
correlated also on an individual basis (figure 4). We could not
detect a significant relationship for participants in any group.

DISCUSSION
This paper describes the results of LIS and VA in former prema-
ture infants compared with term-born children at the age of 6–
13 years. For the first time, we show LIS data correlated with
BW and GA at birth, and in relation to the severity of ROP as

verified by digital wide-field fundus imaging, and compare these
results with VA data. The two data sets revealed matching infor-
mation concerning the overall reduced function of foveal photo-
receptors in very premature children.

VA data of former premature infants obtained in a large
number of studies are considered to be the standard parameter
to describe foveal function.15–24 However, with the recent
growth of data describing morphological alterations, such as
delayed or incomplete foveal development, arrest of centrifugal
inner retinal layer migration or sparing of photoreceptor devel-
opment, VA data alone may not be sufficient to allow in-depth
functional–morphological correlations.40 Therefore, our LIS
data at 0° further describe foveal function in addition to VA,
and LIS at 2.8° and 8° enlarge the functional data set to parafo-
veal and more peripheral locations.

Interestingly, the foveal and parafoveal LIS (0 and 2.8°), but
not the peripheral LIS (8°), were slightly but significantly
reduced in former prematures compared with term-born chil-
dren. The sectors with the lowest BW or the lowest GA dis-
played significantly reduced LIS for all groups compared with
term-born children, indicating that both factors are the most
critical parameters in the development of foveal function. On
the other hand, the reduction of LIS in these two sectors with
lowest BW or GA was not correlated with the severity of ROP,
indicating that ROP stages are only an additional parameter in
the development of foveal function.

Peripheral (8°) LIS was not altered in former preterm infants
in our study, which may indicate that the immaturity of the
retina is restricted to the foveal pit, with normal peripheral
retinal function. Detailed analysis of early and follow-up retinal
imaging data may help get further insight and is part of ongoing
investigations. The value of information on retinal function
close to the fovea has been demonstrated in other disorders,
where small and locally limited pathologies remained
undetected when testing VA alone.36 37

The VA data of our study show a general reduction of foveal
function in prematurely born children compared with the
control group. The reduction increased with the severity of
acute ROP. These results are in line with previous population-
based studies. Holmström and colleagues reported a prevalence
of poor vision of 34% for a VA of <20/28 in the no-ROP
group and 61% in the group with ROP at 4.5 years, and an
increased risk for visual dysfunction in children with a history
of ROP at 10 years.19 In a study with 24 former premature
infants, Bonotto and colleagues reported a VA of 20/20 in 87%
for sr-ROP and 100% for no-ROP.41 Furthermore, Villegas and
colleagues observed that only 64% (n=28) of 44 former prema-
ture infants had 20/40 VA or better at the age of 2–18 years.40

All these data and ours show that prematurity by itself is a
risk factor for reduced VA and the presence of ROP increases
the risk for poor vision. However, when looking at the two
sectors lowest BW and lowest GA, no significant differences
were observed between the groups sr-ROP and no-ROP, indicat-
ing that, similarly to the LIS data at 0°, BWand GA are the most
critical parameters for the determination of highly precise foveal
function, and the presence of spontaneously resolving ROP is
only a minor parameter in this regard.

Interestingly, while the observed correlations were true for
the entire groups, individual results did not show an evident
correlation between central LIS (0°) and VA. VA defines the cap-
acity of the central visual system to discriminate contrast vari-
ation and is different from LIS, which defines the capacity to
discriminate a light stimulus from the background.42 Maximum
LIS depends on the location of the retina that is tested. Since we

Figure 4 Correlation of visual acuity (VA) and light increment
sensitivity (LIS) data on an individual basis. Data of all participants are
shown in a scatter plot with 95% confidence ellipse for the different
study groups. Pearson’s r for every group was <0.05, indicating that no
linear correlation exists between VA and central sensitivity (LIS).
logMAR, logarithm of the minimum angle of resolution; no-ROP,
spontaneously resolved retinopathy of prematurity; sr-ROP,
spontaneously resolved retinopathy of prematurity; Term, term-born
children.
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used bright mesopic conditions and a Goldmann I stimulus at 0°
eccentricity, the detected LIS represents the cone visual system,
similar to VA. An indication of the reason of the reduced LIS
compared with term-born infants could be differences in morph-
ology on SD-OCT suggestive of photoreceptor immaturity in
premature infants.34 Correlation of LIS and VA has been per-
formed with varying degrees of success in a number of patholo-
gies, including diabetic macular oedema, idiopathic epimacular
membrane or idiopathic macular telangiectasia.37 43–45 However,
since all of these studies used the Goldmann III stimulus, ceiling
effects during the tests cannot be excluded,36 rendering a com-
parison with our data difficult. Nonetheless, since both techni-
ques, LIS and VA, describe different qualities of photoreceptor
function in the fovea, lack of a direct correlation may not be sur-
prising but opens the range for more functional entities that can
be described. For example, a study on factors affecting the
reading speed in patients with diabetic macular oedema found
that this speed was reduced in those patients treated with laser
photocoagulation and correlated significantly with decreased
central LIS values and reduced contrast sensitivity, but not VA.46

Our results suggest that foveal function is impaired in chil-
dren with a history of low BWand/or GA at birth, regardless of
the development of an acute ROP. The severity of ROP should
be considered as an additional factor that may worsen the visual
outcome. We postulate that delayed foveal maturation may be
an important factor for the development of optimal central
visual function and LIS.
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