Responses

Download PDFPDF
Collateral vessels on optical coherence tomography angiography in eyes with branch retinal vein occlusion
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • Responses are moderated before posting and publication is at the absolute discretion of BMJ, however they are not peer-reviewed
  • Once published, you will not have the right to remove or edit your response. Removal or editing of responses is at BMJ's absolute discretion
  • If patients could recognise themselves, or anyone else could recognise a patient from your description, please obtain the patient's written consent to publication and send them to the editorial office before submitting your response [Patient consent forms]
  • By submitting this response you are agreeing to our full [Response terms and requirements]

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    Author response to “Collaterals or telangiectasias?”
    • Norihiro Suzuki, Assistant Professor Nagoya City University Graduate School of Medical Sciences
    • Other Contributors:
      • Yoshio Hirano, Lecturer (Associate Professor)
      • Taneto Tomiyasu, Ophthalmologist
      • Ryo Kurobe, Ophthalmologist
      • Yusuke Yasuda, Ophthalmologist
      • Yuya Esaki, Ophthalmologist
      • Tsutomu Yasukawa, Associate Professor
      • Munenori Yoshida, Professor
      • Yuichiro Ogura, Full-time Professor

    Dear Editor,

    We appreciate the valuable comments from Dr. Sato regarding our recently published article.1 Dr. Sato’s comments raise important points about definition of collateral vessels in eyes with branch retinal vein occlusion (BRVO).
    As previously reported,2 collateral vessels develop from the pre-existing retinal capillary network to drain a blood flow from an obstructed vein into an adjacent area in eyes with BRVO. Therefore, in the current study, we defined collateral vessels as dilated and tortuous capillaries occurring in pre-existing capillary beds and linking the obstructed vessel with the nearest patent vessel. Thus, the adjacent vessels also seemed to be dilated and tortuous, which had been similarly observed in our previous study.3 We speculate that the pressure gradient between an obstructed vein and neighbouring unobstructed vessels causes collateral vessels formation. The collaterals detection rate in the current study was higher than in the previous study.3 This is because wider optical coherence tomography angiography (OCTA) images, the size of which was 6 ✕ 6 mm in area, were used in the current study.
    Regarding the other comment about the location of collateral vessels, Freund et al4 reported that collateral vessels were observed in only deep retinal capillary layer. However, we confirmed that the collateral vessels were present in both the superficial and the deep capillary layers on B scan images of OCTA. Additionally, fluoresc...

    Show More
    Conflict of Interest:
    None declared.
  • Published on:
    Collaterals or telangiectasias?
    • Tatsuhiko Sato, Retina specialist Hayashi Eye Hospital, Fukuoka, Japan

    I read with great interest the paper titled “Collateral vessels on optical coherence tomography (OCT) angiography in eyes with branch retinal vein occlusion (BRVO)” by Suzuki et al.1
    The authors defined collateral vessels as dilated and tortuous capillaries occurring in pre-existing capillary beds and linking the obstructed vessel with the nearest patent vessel, according to previous reports.2-4 The authors demonstrated that collaterals were detected in 23 out of 28 (82%) eyes, all of which already existed at mean 0.95 months after the onset, and that all of the collaterals were observed in both the retinal superficial and the deep layers.
    However, some of the vessels which are pointed out as collaterals in the study1 look like simply dilated/tortuous vessels, because they don’t seem to connect obstructed to non-obstructed adjacent vessels nor by-pass obstructions. In a previous report, the authors found collateral vessels in 18 out of 28 (64%) eyes at mean 25.1 months from the onset, while superficial and deep capillary telangiectasias were detected in 13 and 28 out of 28 eyes, respectively.4 Therefore, I suppose that some of the vessels defined as collaterals in this study1 may be simply telangiectasias.
    Fruend et al.5 defined collateral vessels as the authors did. After excluding collaterals involving the perifoveal vascular ring, they demonstrated that collaterals were found in 23 out of 23 eyes (100%) at median time of 3.79 years from RVO...

    Show More
    Conflict of Interest:
    None declared.