Article Text

Download PDFPDF
Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning


Background/Aims To develop a deep learning system (DLS) that can automatically detect malignant melanoma (MM) in the eyelid from histopathological sections with colossal information density.

Methods Setting: Double institutional study.

Study population: We retrospectively reviewed 225 230 pathological patches (small section cut from pathologist-labelled area from an H&E image), cut from 155 H&E-stained whole-slide images (WSI).

Observation procedures: Labelled gigapixel pathological WSIs were used to train and test a model designed to assign patch-level classification. Using malignant probability from a convolutional neural network, the patches were embedded back into each WSI to generate a visualisation heatmap and leveraged a random forest model to establish a WSI-level diagnosis.

Main outcome measure(s): For classification, the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were used to evaluate the efficacy of the DLS in detecting MM.

Results For patch diagnosis, the model achieved an AUC of 0.989 (95% CI 0.989 to 0.991), with an accuracy, sensitivity and specificity of 94.9%, 94.7% and 95.3%, respectively. We displayed the lesion area on the WSIs as graded by malignant potential. For WSI, the obtained sensitivity, specificity and accuracy were 100%, 96.5% and 98.2%, respectively, with an AUC of 0.998 (95% CI 0.994 to 1.000).

Conclusion Our DLS, which uses artificial intelligence, can automatically detect MM in histopathological slides and highlight the lesion area on WSIs using a probabilistic heatmap. In addition, our approach has the potential to be applied to the histopathological sections of other tumour types.

  • eyelids
  • pathology
  • telemedicine

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Linked Articles

  • At a glance
    Keith Barton James Chodosh Jost B Jonas