Article Text
Abstract
Background/Aims To develop a deep learning system (DLS) that can automatically detect malignant melanoma (MM) in the eyelid from histopathological sections with colossal information density.
Methods Setting: Double institutional study.
Study population: We retrospectively reviewed 225 230 pathological patches (small section cut from pathologist-labelled area from an H&E image), cut from 155 H&E-stained whole-slide images (WSI).
Observation procedures: Labelled gigapixel pathological WSIs were used to train and test a model designed to assign patch-level classification. Using malignant probability from a convolutional neural network, the patches were embedded back into each WSI to generate a visualisation heatmap and leveraged a random forest model to establish a WSI-level diagnosis.
Main outcome measure(s): For classification, the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were used to evaluate the efficacy of the DLS in detecting MM.
Results For patch diagnosis, the model achieved an AUC of 0.989 (95% CI 0.989 to 0.991), with an accuracy, sensitivity and specificity of 94.9%, 94.7% and 95.3%, respectively. We displayed the lesion area on the WSIs as graded by malignant potential. For WSI, the obtained sensitivity, specificity and accuracy were 100%, 96.5% and 98.2%, respectively, with an AUC of 0.998 (95% CI 0.994 to 1.000).
Conclusion Our DLS, which uses artificial intelligence, can automatically detect MM in histopathological slides and highlight the lesion area on WSIs using a probabilistic heatmap. In addition, our approach has the potential to be applied to the histopathological sections of other tumour types.
- eyelids
- pathology
- telemedicine
Statistics from Altmetric.com
Linked Articles
- At a glance