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Is artificial intelligence a solution to the 
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Artificial intelligence (AI) has been billed 
as a key component of the Fourth Indus-
trial Revolution. Currently, we are 
witnessing the growing shift of AI from 
theoretical ideations to practical applica-
tions in healthcare.1 2 Ophthalmology has 
emerged as one of the focal points of AI 
research.3–5 Current AI platforms are 
highly successful in screening for diabetic 
retinopathy, age- related macular degener-
ation and glaucoma.6–11 Other fields 
including cataract screening are similarly 
producing promising results.12 13

The WHO has identified that least 
1 billion suffer from vision impairment 
that is preventable or treatable—of which 
myopia is a significant factor. With its 
growing prevalence in East Asia and many 
parts of the world, the ‘myopia pandemic’ 
is estimated to affect 50% (4.7 billion) 
of the world’s population by 2050, with 
10% (1 billion) having high myopia 
(≤−5.00 D).14–16 This could lead to a 
staggering number of myopic individuals 
at risk of developing blinding conditions 
including myopic macular degeneration 
(MMD) and macular neovascularisation 
(MNV).17 However, AI research efforts 
in the field of refractive errors,18 partic-
ularly myopia19 are still relatively under- 
developed (table 1).

The global attention towards myopia 
has led to a renewed focus on prediction, 
prevention, prognostication, early control 
as well as diagnostic accuracy.20 Early 
identification of high- risk individuals and 
unhindered access to appropriate health-
care will be critical in stemming the myopic 
tide. This has led to greater emphasis to 
develop dedicated AI models to address 
these unmet needs, especially for different 
phenotypes of myopia—childhood and 
adult myopia (high and pathological 

myopia). Relevant considerations include 
age, population size of each segment and 
measurable dataset, resource allocation, 
potential social burden, complication 
risks, access to quality myopia treatment, 
impact of universal health coverage,21 
stakeholder (patients, parents, clinicians 
and policy makers) concerns and treat-
ment aims. Overall, the interventional 
aims of AI in myopia are dependent on 
the phenotype of myopia, comprising 
(1) diagnostic; (2) individualised disease 
prediction and prognostication; (3) indi-
vidualised treatment planning; (4) rapid 
accessible risk- assessment platforms for 
national screening programmes or primary 
ophthalmic healthcare providers.

CHILDHOOD MYOPIA
Due to the potential irreversible disease 
burden during adulthood, it is imperative 
that childhood myopia is detected early 
and combined with effective therapy to 
retard progression. The implementation 
of AI platforms would require a holistic 
approach, in order to achieve all interven-
tional aims as stated. Diagnostic AI models 
calibrated for rapid national screening 
programmes would aid in early identifi-
cation of otherwise undetected childhood 
myopia. Complementing this approach 
would involve AI algorithms developed 
to predict disease progression in order to 
achieve precision therapy.

Recently, deep learning and computer 
vision technology applied to large- scale 
myopia screening using ocular appear-
ance images yielded promising results.22 
In a study by Lin et al,23 random forest 
machine learning was trained and vali-
dated with real world clinical refraction 
data to predict development of high 
myopia over a period of 10 years and by 
the age of 18. They achieved a high area 
under the receiver operating character-
istic curves (AUC) in all scenarios with 
clinically acceptable prediction of actual 
refraction in future time points. This 
demonstrates that development of clini-
cally viable AI prediction models for child-
hood myopia could be nearing maturity. 

Further research would still be required 
for interpopulation validation in order for 
these models to be generalised.

As AI evolves, more advanced predic-
tive models are being developed. In child-
hood myopia, parental concern would be 
the potential progression rate and risk 
of developing high or even pathological 
myopia in their child. It is thus clinically 
important that high risk individuals are 
appropriately identified for early interven-
tion. Current myopia preventive strategies 
include pharmacotherapies and various 
optical myopia control modalities.24–30 
Anticipating each individual’s response 
to various modalities, either as mono or 
combination therapy could be a differenti-
ating factor between treatment success and 
failure. Therefore, the development of AI 
treatment models could possibly bridge 
this gap and optimise patient outcomes. 
Possible models could use serial refraction 
data, axial length changes as well as optical 
coherence tomography (OCT) choroidal 
thickness or vascularity changes to derive 
treatment protocols.31 Currently, there are 
no published models for treatment indi-
vidualisation in myopia. However, future 
improvements of predictive AI models 
coupled with prospective data collation 
could potentially lay the foundations of 
individualised treatment models.

ADULT MYOPIA
The structural composition of myopia 
presents a life- long susceptibility to 
complications such as retinal detachment 
and glaucoma. These concerns are partic-
ularly pressing in myopic adults. The indi-
cations of AI- based management in this 
population would need to be narrowed 
down to (1) diagnostic challenges; (2) 
population screening for pathological 
myopia; (3) predictive prognostication for 
sight threatening complications.

Myopic diagnostic challenges in adult-
hood include accurate assessment of glau-
comatous damage in highly tilted myopic 
disc.32 33 Generalisable AI models would 
hence be a valuable tool to discern suspi-
cious discs for the concerned glauco-
matologist. Separately, the scalability of AI 
models can potentially enable large- scale 
automated rapid screening modalities, 
particularly in countries with high preva-
lence of the disease.

Current developments involve convo-
luted neural network (CNN) models 
developed to identify vision- threatening 
conditions in highly myopic adults using 
OCT macular images for retinoschisis, 
macular hole, retinal detachment and 
MNV,34 with good sensitivities and AUC.35 
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CNN models have also been devel-
oped to detect pathological myopia and 
semantic segmentation of myopia- induced 
lesions.36 AI researches targeting the optic 
nerve head have also yielded encouraging 
results. The combination of disc photos 
with structural and functional inputs, such 
as automated perimetry and OCT, have 
achieved excellent results in identifying 
early glaucomatous injury.37 38

It is still possible that the diagnostic 
performance of AI in myopia will 
reach clinical acceptance in the future. 
However, the main barriers such as 
complicated disease- phenotype identifi-
cation, unsatisfactory image acquisition 
as well as network and logistical difficul-
ties in low- income and middle- income 
countries could impede final clinical 
implementation.

Unlike childhood myopia, predictive 
and prognosticative value of AI for adult 
myopic patients presents a different 
conundrum. Questions abound such as 
whether predictive prognostication by AI 
for post- surgical outcomes in patients who 
suffered complications such as foveoschisis 
is achievable. In addition, it is unknown 
whether AI can be harnessed to predict 
the trajectory of visual deterioration in 

Table 1 Summary of current Artificial Intelligence research in myopia

Title (year)
Population (age 
group) Modalities AI model Aims Use Findings

Deep learning for predicting 
refractive error from retinal fundus 
images (2018)18

General population
(adults)

Fundal imaging DL—CNN Refractive error 
prediction

Diagnostic/
detection

Mean absolute error (MAE) 
of 0.56–0.91 D

Prediction of myopia development 
among Chinese school- aged 
children using refraction data 
from electronic medical records: a 
retrospective, multicentre machine 
learning study (2018)23

General population 
(children)

Age, SE, annual 
progression rate

ML—random 
forest, mixed model, 
generalised estimating 
equation

High myopia over 10 
years and by age 18

Prediction High myopia over up to 10 
years AUC:
3 years 0.874–0.976
5 years0.847–0.921
8 years 0.802–0.886
High myopia by 18 years 
old AUC:
3 years 0.940–0.985
5 years 0.856–0.901
8 years 0.801–0.837

A deep learning system for 
identifying lattice degeneration 
and retinal breaks using ultra- 
widefield fundus images (2019)43

General population
(adolescent to adults)

Ultrawide fundal 
images

DL—CNN Notable peripheral 
retinal lesions (lattice 
or breaks)

Diagnostic/
detection

AUC 0.999
Sensitivity 98.7%
Specificity 99.2%

A machine learning- based 
algorithm used to estimate the 
physiological elongation of ocular 
axial length in myopic children 
(2020)44

0 to −8D myopia
(children)

Demographics, SE, 
K, WTW, CCT

ML—linear regression 
vs SVM vs Bagged Trees

AL elongation 
prediction

Prediction Best model: robust linear 
regression
R2 0.87, 0.003 to 
0.116 mm/year

Accuracy of a deep convolutional 
neural network in the detection 
of myopic macular diseases using 
swept- source optical coherence 
tomography (2020)45

Myopia vs high 
myopia
(adults)

Swept source- OCT 
(SS- OCT)

DL—CNN Detection of myopic 
macular diseases 
(schisis, MNV)

Diagnostic/
detection

Detection of macular 
lesions:
AUC 0.970
Sensitivity 90.6% 
Specificity 94.2%
Accuracy of high myopia vs 
MNV vs schisis:
96.5% vs 77.9% vs 67.6%

Automatic identification of myopia 
based on ocular appearance 
images using deep learning 
(2020)22

All myopia (children) Facial/ocular 
photos

DL—CNN Myopia detection Diagnostic/
detection

AUC 0.9270
Sensitivity 81.13%
Specificity 86.42%

Development and validation of a 
deep learning system to screen 
vision- threatening conditions 
in high myopia using optical 
coherence tomography images 
(2020)35

High myopia
(adults)

OCT DL—CNN Screening of vision- 
threatening conditions 
(schisis, macular hole, 
retinal detachment, 
MNV)

Diagnostic/
detection

AUC 0.961–0.999
Sensitivity and specificity 
>90%

Pathological myopia classification 
with simultaneous lesion 
segmentation using deep learning 
(2020)36

PALM dataset Fundal images DL—CNN Detection of 
pathological myopia, 
foveal localisation, 
segmentation of 
retinal atrophy or 
retinal detachment

Diagnostic/
detection

Pathological myopia AUC 
0.9867
Foveal localisation 58.27 
pixels

Prediction of Myopia in 
adolescents through machine 
learning methods (2020)46

General population
(children)

Family history, 
gender, indoor and 
outdoor activities, 
axial length, 
keratometry

ML—SVM Myopia prediction at 
6th grade

Prediction AUC 0.98 Accuracy 93% 
Sensitivity 94% Specificity 
94%

Using artificial intelligence and 
novel polynomials to predict 
subjective refraction (2020)47

General population
(adults)

Wavefront 
aberrometry, LD/
HD polynomial

ML—XGBoost Subjective refraction 
prediction

Diagnostic Mean absolute error of 
power vectors between 
0.094 and 0.301 D

AUC, area under receiver operating characteristic curve; CCT, central corneal thickness; CNN, convoluted neural network; DL, deep learning; K, keratometry; LD/HD, low degree/
high degree; MNV, myopic neovascularisation; OCT, optical coherence tomography; SE, spherical equivalent; WTW, white to white.
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the presence of sight- threatening compli-
cations as well. These pertinent doubts 
arise due to the lack of effective treatment 
in conditions such as MMD, relatively 
good overall prognosis for conditions like 
MNV39 and rarity of surgical treatment 
for foveoschisis. Hence, technical defi-
ciencies and questionable use- case in the 
face of constraint resources could limit the 
use of AI predictive models in adults.

CHALLENGES AND FUTURE 
DIRECTIONS
The application of AI into clinical practice 
for myopia face several challenges. First, 
it has been recognised that a successful 
myopia prevention programme requires 
a coordinated effort between all stake-
holders, including governments, schools, 
parents or care- givers, primary eye care 
practitioners and ophthalmologists.40 
Thus, a successful AI programme that 
could benefit myopia prevention in chil-
dren, would require the agreement and 
close collaboration among these key 
players. Second, in order for the bene-
fits of AI to be easily accessible, it would 
require sustainable and cost- effective 
implementation into clinical practice.41 
The AI algorithms needs to undergo 
accurate training and validation across 
multi- ethnic datasets.42 Furthermore, the 
inherent difficulty in image- capturing for 
highly myopic eyes needs to be overcome 
for efficient uninterrupted clinical imple-
mentation. Third, the implementation of 
AI solution in myopia needs to impact the 
change in clinical practice. It is important 
to ensure the consistency of AI algorithm 
performance in the clinical setting with 
generalisability across multi- ethnicity, 
particularly in heterogenous populations.

In conclusion, myopia is a growing 
pandemic that requires prompt attention. 
There is a need to transform clinical prac-
tice and healthcare policies to support the 
implementation of individualised treat-
ment in myopia management. It is still an 
open debate about the role and impact AI 
will have in the field of myopia. Critical 
technical and clinical challenges have to be 
surmounted prior to the mass adoption of 
AI healthcare in myopia.
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