Article Text

Download PDFPDF
Prevalence and risk factors of pseudomyopia in a Chinese children population: the Anyang Childhood Eye Study
  1. Meng-Tian Kang1,2,
  2. Catherine Jan3,4,
  3. ShiMing Li1,2,
  4. Mayinuer Yusufu1,2,
  5. Xintong Liang1,2,
  6. Kai Cao2,
  7. Luo-Ru Liu5,
  8. He Li5,
  9. Ningli Wang1,2,
  10. Nathan Congdon6,7
  1. 1 Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
  2. 2 Beijing Institute of Ophthalmology, Beijing, China
  3. 3 The George Institute for Global Health, University of New South Wales Faculty of Medicine, Sydney, Australia
  4. 4 Center for Brain and Cognitive Sciences and School of Psychological and Cognitive Sciences, Peking University, Beijing, China
  5. 5 Anyang Eye Hospital, Anyang, China
  6. 6 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
  7. 7 Centre for Public Health, Queen’s University Belfast, Belfast, UK
  1. Correspondence to Ningli Wang and Shi-Ming Li, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Science Key Lab. No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, People’s Republic of China; wningli{at}; lishiming81{at}


Aims To investigate the prevalence and predictors of pseudomyopia in Chinese children and its association with myopia progression.

Methods A prospective, school-based, cohort study of 6- and 13-year-old children was conducted in Anyang, China. Pre-cycloplegic and post-cycloplegic autorefraction were performed at baseline and 1 year later. Pseudomyopia was defined as spherical equivalent refractive (SER) error in the better–seeing eye ≤−0.50 D before cycloplegia and >−0.50 D after cycloplegia. Among pseudomyopic children, pseudomyopic power was defined as non-cycloplegic SER subtracted from cycloplegic SER. Market survey was collected in all optometry stores in Anyang city to investigate how cycloplegia is used for refracting children.

Results A total of 2612 children aged 6 years and 1984 children aged 13 years were included. Of the two cohorts, median cycloplegic SER (IQR) was 1.00 D (0.50, 1.38) and −1.13 D (−2.63, 0.13) respectively, myopia prevalence was 5.2% and 61.0%, pseudomyopia prevalence was 24.1% and 18.9%, and median pseudomyopic power was 1.13 D (0.63, 1.63) and 0.38 D (0.13, 0.88). In both cohorts, greater baseline hyperopia was the strongest predictor of pseudomyopia (p<0.001), whereas time spent on near work was not associated with pseudomyopic power (p>0.05). After 1 year, 15.6% (98/629) of 6-year-olds and 10.7% (40/374) of 13-year-olds with pseudomyopia developed myopia. Compared with myopes, pseudomyopic children with the same pre-cycloplegic SER had slower myopic progression (p<0.001). Among all 127 optometry stores in Anyang, only 4 (3.15%) used cycloplegia for refracting children.

Conclusion Pseudomyopia is more prevalent in younger, more hyperopic children. Pseudomyopia is not an independent risk factor for myopic progression in this setting.

  • Optics and Refraction
  • Epidemiology
  • Child health (paediatrics)

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • M-TK and CJ are co-first authors.

  • Contributors NW and SML contributed to acquisition of funding, collection of data and general supervision of the research group. NC contributed to design, data analysis and revision of the manuscript for important intellectual content. M-TK contributed to design, collection of data, analysis of results and drafting of the manuscript. CJ contributed to design, data analysis and drafting of the manuscript. KC contributed to the data analysis. MY contributed to the manuscript revision. XL contributed to the collection of data. L-RL and HL helped organise the survey in Anyang.

  • Funding The work was supported by Young Elite Scientists Sponsorship Program by CAST (YESS) (2018QNRC001), a pump-priming scientific research foundation for junior researchers at Beijing Tongren Hospital, Capital Medical University (2018-YJJ-ZZL-044), Beijing talents foundation (2016000021469ZK28), the capital health development scientific research project (2020-026270) and the National Natural Science Foundation of China (81120108007). Professor Congdon was supported by the Ulverscroft Foundation (UK).

  • Competing interests The authors declare that they have no competing interest. Professor NC works as Director of Research at Orbis, a non-governmental organisation working in eye health.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information.

Linked Articles

  • At a glance
    Frank Larkin