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ABSTRACT
Aims  To apply a deep learning model for automatic 
localisation of the scleral spur (SS) in anterior segment 
optical coherence tomography (AS-OCT) images and 
compare the reproducibility of anterior chamber angle 
(ACA) width between deep learning located SS (DLLSS) 
and manually plotted SS (MPSS).
Methods  In this multicentre, cross-sectional study, 
a test dataset comprising 5166 AS-OCT images from 
287 eyes (116 healthy eyes with open angles and 171 
eyes with primary angle-closure disease (PACD)) of 
287 subjects were recruited from four ophthalmology 
clinics. Each eye was imaged twice by a swept-source 
AS-OCT (CASIA2, Tomey, Nagoya, Japan) in the same 
visit and one eye of each patient was randomly selected 
for measurements of ACA. The agreement between 
DLLSS and MPSS was assessed using the Euclidean 
distance (ED). The angle opening distance (AOD) of 750 
µm (AOD750) and trabecular-iris space area (TISA) of 
750 µm (TISA750) were calculated using the CASIA2 
embedded software. The repeatability of ACA width was 
measured.
Results  The mean age was 60.8±12.3 years (range: 
30–85 years) for the normal group and 63.4±10.6 years 
(range: 40–91 years) for the PACD group. The mean 
difference in ED for SS localisation between DLLSS and 
MPSS was 66.50±20.54 µm and 84.78±28.33 µm for 
the normal group and the PACD group, respectively. 
The span of 95% limits of agreement between DLLSS 
and MPSS was 0.064 mm for AOD750 and 0.034 mm2 
for TISA750. The respective repeatability coefficients of 
AOD750 and TISA750 were 0.049 mm and 0.026 mm2 
for DLLSS, and 0.058 mm and 0.030 mm2 for MPSS.
Conclusion  DLLSS achieved comparable repeatability 
compared with MPSS for measurement of ACA.

INTRODUCTION
Primary angle-closure glaucoma (PACG) is one of 
the leading causes of irreversible visual impairment, 
accounting for 50% of bilateral glaucoma blindness 
worldwide. By 2040, the number of global patients 
with PACG will increase by 58.4% over 2013, 
reaching 32.04 million.1 The assessment of the 
anterior chamber angle (ACA) dimensions is critical 
to the detection of angle closure, which is a condi-
tion conventionally evaluated with gonioscopy. 

However, gonioscopy assessment is subjective with 
low repeatability.2 3 Another approach to eval-
uate the ACA is anterior segment optical coher-
ence tomography (AS-OCT) imaging. AS-OCT 
provides quantitative assessment of the ACA such 
as the trabecular-iris space area (TISA) and angle 
opening distance (AOD). Since the ACA dimensions 
are typically measured from the scleral spur (SS), 
localisation of the SS is critical for reliable measure-
ments of the ACA. However, the inconsistency of 
manual labelling of the SS in AS-OCT images would 
lead to low test–retest variability of ACA parame-
ters. Therefore, a reliable means to locate the SS 
can significantly improve the repeatability of ACA 
measurements.4

Machine learning has been shown to take an 
important role in many clinical applications.5–7 
A number of studies have applied deep learning 
or machine learning algorithms (eg, support 
vector machine) to determine whether the ACA is 
closed.8–12 These studies have demonstrated high 
diagnostic performance of machine learning, and 
deep learning models in the diagnosis of angle 
closure. However, deep learning has been criticised 
for being an end-to-end black-box model, which is 
difficult to meet the interpretability requirement for 
clinical use since these models only provide the final 
diagnosis results without proper interpretation. In 
this study, we developed a novel deep learning arti-
ficial intelligence (AI) method to locate the SS auto-
matically and evaluated the repeatability of ACA 
measurements based on deep learning located SS 
(DLLSS) and manually plotted SS (MPSS).

METHODS
Participants and AS-OCT imaging
The participants were from four ophthalmology 
centres: The Chinese University of Hong Kong 
(CUHK), Tokyo University (TU), University of 
California, San Francisco (UCSF) and Zhongshan 
Ophthalmic Center (ZOC). Patients with a history 
of corneal scarring, corneal surgery or active 
infection of the eye were excluded. Demographic 
information, including patient age, gender and 
examination findings, were collected.

Healthy subjects have normal intraocular pres-
sure (IOP), open angles on darkroom gonioscopy 
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for both eyes and no evidence of ocular abnormalities except 
refractive errors and visually insignificant cataract. Gonioscopic 
angle closure was defined as having invisible posterior trabec-
ular meshwork for ≥180° on darkroom gonioscopy; PACS 
had gonioscopic angle closure without a history of IOP >21 
mm Hg, peripheral anterior synechiae (PAS) or glaucoma (ie, 
abnormal visual field tests or glaucomatous retinal nerve fibre 
layer (RNFL)/optic disc changes); primary angle closure (PAC) 
had gonioscopic angle closure with IOP  >21 mm Hg in ≥2 
consecutive visits or PAS; PACG had gonioscopic angle closure 
and glaucoma (ie, narrowed neuroretinal rim and thinned RNFL 
with or without visual field defects). PACD includes PACS, 
PAC and PACG.13 The inclusion criteria were phakic eyes, best 
corrected visual acuity better than 20/40, the spherical equiv-
alent  ≥−6.0D and no history of intraocular surgery or laser 
procedure (eg, laser iridotomy).

AS-OCT images were obtained with the AS-OCT instrument 
CASIA2 (Tomey Corporation, Nagoya, Japan). Eighteen B-scans 
evenly spaced over 360° were taken for each eye. The training 
and validation dataset was provided by ZOC, which contained 
8658 AS-OCT images from 481 eyes (377 eyes for training 
and 104 eyes for validation). The test dataset contained 5166 
AS-OCT images of 171 eyes with PACD and 116 healthy eyes 
with open angles recruited from four ophthalmology clinics 
(CUHK, TU, UCSF and ZOC). Each eye underwent AS-OCT 
examination twice in the same visit, named Dark1 and Dark2 
dataset in this study. Participants were consecutively recruited 
between 1 April 2017 and 31 December 2019. All B-scans in 
train, validation and test set were examined for scan quality, but 
the low-quality images, for example, blurred images, artefacts of 
motion/blink, etc were excluded. To evaluate the 36 angles, we 
excluded the eyes with eyelids obscuring the ACA more than one 
B-scan or with indiscernible SS for ≥5 angle meridians. For eyes 
with indiscernible SS <5 but ≥1 angle meridians, the SS was 
localised with reference to the visible SS in the adjacent B-scan 
that was 10° or 20° apart. We further check that after scan quality 
check, each eye should have at least two available captures for 
the following reproducibility analysis procedure. For eyes that 
have more than one valid scan, according to the capture time, 
we used the first scan of each eye as the Dark1 dataset and the 
second scan as the Dark2 dataset. Total 43 eyes were excluded 
in our study. One human expert grader masked to the identities 
and examination results of the participants, marked all the 36 SS 
in 18 scans per eye; these labels of SS locations were considered 
the reference standard.

Deep learning SS localisation
We developed a two-stage SS localisation network to automate 
the localisation of SS. Our two-stage SS localisation network also 
addressed the quantisation errors of heatmap-based methods14 
to allow more reliable localisation of the SS. The framework of 
the neural network design is illustrated in online supplemental 
figure 1. The two-stage SS localisation network has adopted a 
coarse to fine strategy. The first stage S1 was designed to esti-
mate the location of the SS roughly from a compressed AS-OCT 
image. The second stage S2 was to locate the SS from an uncom-
pressed region of interest (ROI).

U-Net15 is a widely used deep learning network in the field 
of medical image analysis. U-Net consists of downsampling and 
upsampling convolutional blocks and skip connections between 
the convolutional blocks. The downsampling and upsampling 
convolutional blocks are convolution layers and transposed 
convolution layers followed by the maxpooling layer. To mitigate 

the influence of information loss caused by downsampling, we 
applied the skip connections to concatenate the downsam-
pled features and upsampled features on the same level. In this 
study, we used the original U-Net structure, which consists of 
four downsampling convolutional blocks and four upsampling 
convolutional blocks.

We used U-Net to generate the SS possibility map for both 
‍S1‍ and ‍S2‍. Let ‍I ∈ Rh×w×c‍ be the original image which has ‍c‍ 
channels, ‍w‍ width in pixels and ﻿‍h‍ height in pixels. We downs-
ampled ﻿‍I‍ to a lower resolution image ‍I1 ∈ Rh1×w1×c

‍ as the input 
of ‍S1‍. The output of ‍S1‍ is the SS heatmap ‍H1 ∈

[
0, 1

]h1×w1×1 .‍ 

‍H1‍ locates left and right SS simultaneously. In this study, 
‍w1 = 800, h1 = 800‍ were used in all experiments. We obtained 
the predicted left and right SS coordinates ‍P

l
S1‍ and ‍P

r
S1‍ of ‍S1‍ by 

finding the max value location of left and right peak in ‍H1‍. ‍P
l
S1‍ 

and ‍P
r
S1‍ are roughly estimated SS locations due to the downs-

ampled input data, but they are accurate enough to be used to 
extract the left and right ROIs, where the SS is located. The two 
ROIs ‍I

l
2‍ and ‍I

r
2‍ were cropped from ﻿‍I‍ with the size ‍400× 400‍ and 

centre at ‍P
l
S1‍ and ‍P

r
S1‍, respectively. Similar to ‍S1‍, an individual 

U-Net was used to generate the SS heatmap ‍H
l
2‍ and ‍H

r
2‍. The 

difference between ‍S1‍ and ‍S2‍ is that ‍S2‍ individually locates left 
and right SS. The coordinates of the SS in ROIs ‍P

l
S2‍ and ‍P

r
S2‍ are 

determined by the locations of the maximum value of ‍H
l
2‍ and 

‍H
r
2‍. Because ‍I

l
2‍ and ‍I

r
2‍ have the same resolution of the original 

image ﻿‍ I‍, the effect of qualitative errors significantly reduced in 
the prediction of ‍S2‍. The final coordinates of SS were obtained 
by mapping the ROIs back to ﻿‍ I‍ according to ‍P

l
S2‍, ‍P

r
S2‍, ‍P

l
S1‍ and 

‍P
r
S1‍.
The L2 loss function was adopted between ground truth 

heatmap and the output heatmap ‍H‍. The ground truth heatmap 
were generated with a two-dimensional (2D) Gaussian blob 
centred on the ground truth SS location. Similar to hourglass 
network,16 we use 2D Gaussian blob, which has an SD ﻿‍σ = 1‍. 
Deep learning model was trained up to 200 epochs with a sepa-
rate training dataset, including 377 eyes (6786 images). During 
the training process, the validation loss was evaluated using the 
validation set (104 eyes and 1872 images) after each epoch and 
used as a reference for model selection. If the validation loss did 
not improve over 30 consecutive epochs, the training process 
was stopped. The model state where the validation loss was the 
lowest was saved as the final state of the model.

ACA parameters evaluation
The SS of angle location from all subjects was manually plotted 
by a single observer (KO) on the CASIA2 software (V.3C.35, 
Tomey Corporation, Nagoya, Japan), and the ACA parameters 
are automatically calculated. We used degree to present results, 
and the definition of angle degree was shown in online supple-
mental figure 2. In this work, the clinical parameters (online 
supplemental figure 3) included17:
1.	 Angle opening distance 750 (AOD750): the perpendicular 

distance from the cornea at 750 µm from the SS to the ante-
rior iris surface.

2.	 Trabecular-iris space area 750 (TISA750): the trapezoidal 
area bounds by the AOD750 and the perpendicular distance 
from the SS to the anterior iris surface.

Statistical analysis
The deep learning modules were developed with PyTorch library, 
V.1.4. Statistical analyses were performed with Python Scipy 
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package (Python V.3.7, Scipy V.1.2.1), SPSS software (statistics 
subscription, build 1.0.0.1406) and MedCalc software (V.19.4.1). 
We evaluated the difference between DLLSS (‍XDLLSS, YDLLSS‍) 
and MPSS (‍XMPSS,YMPSS‍) by calculating the Euclidean distance 

(ED)2: ‍ED =
√(

XDLLSS − XMPSS
)2 + (

YDLLSS − YMPSS
)2

‍. For 

the evaluation of the repeatability and reproducibility of ACA 
measurements, we compared the ACA measurements between 
(1) DLLSS-based and MPSS-based measurements in Dark1, (2) 
DLLSS-based parameters in Dark1 and Dark2 and (3) MPSS-
based parameters in Dark1 and Dark2 with a two-tailed t-test.18 
We used Bland-Altman plots and repeatability coefficients to 
analyse parameters in all mentioned pairs before. The abso-
lute difference of ACA measurements (including AOD750 
and TISA750) between Dark1 and Dark2 was calculated as 
‍|measurements on Dark1 measurements on Dark2|‍. The mean 
absolute difference of measurements between Dark1 and Dark2 
based on DLLSS and based on MPSS was compared with two-
tailed t-test. A p value of <0.05 was considered statistically 
significant for all comparisons.

Post hoc analysis of sample size
We reversely used the sample size estimation formula to check 
the precision of our SS localisation model powered by our 
samples size. There were 287 eyes included in the test dataset, 
that is, 10 332 SSs (36 angles for each eye). Based on our sample 
size and largest SD of the difference between DLLSS and MPSS 
associated with X and Y coordinates (74.07 µm for Y coordi-
nate), our study was powered to locate the SS with a difference 
of 2.362 µm at ﻿‍α‍=0.05 and ‍β‍=0.2. The detailed calculation 
was provided in online supplemental material 1. For the CASIA2 
image resolution, 2.362 µm is much smaller than the width 
and height (8 µm) of one pixel in the original AS-OCT images. 
Therefore, we consider the sample size in this study was enough.

RESULTS
The demographics are given in table 1. A total of 287 eyes of 287 
participants were included in the test dataset. The mean age was 
60.8±12.3 years (range: 30–85 years) for the normal group (116 
eyes: 87 Asians, 17 Caucasians, 2 African Americans, 1 native 

American, 5 Hispanics and 4 unknown ethnicity) and 63.4±10.6 
years (range: 40–91 years) for the PACD group (171 eyes: 144 
Asians, 14 Caucasians, 6 African Americans, 3 Hispanics and 
4 unknown ethnicity). There were 139 right eyes and 148 left 
eyes in the test set. The deep learning model was trained with a 
separate dataset, including 377 eyes (6786 images), and the final 
model state was selected with the validation set, which included 
104 eyes (1872 images) from ZOC. All the participants in train 
and validation set are Asian. The mean age was 45.1±17.3 years 
(range: 7–84 years) for the training dataset (284 normal eyes, 
86 PACD eyes and 7 eyes undiagnosed) and 45.0±15.5 years 
(range: 19–74 years) for the validation set (81 normal eyes, 22 
PACD eyes and 1 eye undiagnosed). In this study, all the 36 angles 
of each eye were included in the model training, validation and 
testing. The mean values in the following tables were calculated 
with 36 angles, while we reported specific angle results every 30° 
for brevity. Full 36 angles version results were provided in online 
supplemental material 2.

Performance of SS localisation
Taking all eyes into consideration (n=287), the mean ED of all 
angles between DLLSS and MPSS was 77.39±26.94 µm in the 
Dark1 dataset (table 2). The mean ED was 84.78±28.33 µm in 
the PACD group and 66.50±20.54 µm in the normal group. 
The ED was smallest at 180° and 0°, and greatest at 60° and 90°. 
In other words, the agreement between DLLSS and MPSS was 
better at the nasal and temporal quadrants than the superior and 
inferior quadrants.

Agreement of ACA width between DLLSS and MPSS
ACA measurements derived from DLLSS were similar to those 
derived from MPSS in the PACD group, although the former was 
generally greater than the latter in the normal group (table 3). 
The span of 95% limits of agreement was 0.064 mm and 
0.034 mm2 for AOD750 and TISA750, respectively (figure 1, 
left column). The R2 was 0.993 and 0.991 for AOD750 and 
TISA750, respectively.

Repeatability of ACA width
The comparisons of ACA width between two AS-OCT scans 
capture in the same visit derived from DLLSS and MPSS are 

Table 1  Demographics of the subjects (mean±SD)

Normal
(mean±SD)

PACD
(mean±SD)

P value*
(normal vs PACD)

Train set

No. of subjects 284 86 –

Age (years) 40.8±16.9 57.7±10.5 <0.001

Gender (M/F) 108/176 27/59 –

Validation set

No. of subjects 81 22 –

Age (years) 41.2±14.9 58.5±8.5 <0.001

Gender (M/F) 33/48 11/11 –

Test set

No. of subjects 116 171 –

Age (years) 60.8±12.3 63.4±10.6 0.062

Gender (M/F) 47/69 48/123 –

AOD750 (mm) 0.385±0.193 0.129±0.079 <0.001

TISA750 (mm2) 0.176±0.087 0.056±0.039 <0.001

*Independent t-test.
AOD, angle opening distance; PACD, primary angle-closure disease; TISA, trabecular-
iris space area.

Table 2  SS location difference between DLLSS and MPSS in Dark1 
dataset

Angle

ED all
(mean±SD, µm)
(N=287)

ED normal
(mean±SD, µm)
(N=116)

ED PACD
(mean±SD, µm)
(N=171)

Mean 77.39±26.94 66.50±20.45 84.78±28.33

0° 63.91±47.90 53.21±33.34 71.17±54.56

30° 81.11±58.22 74.10±54.73 85.87±60.17

60° 98.60±102.51 78.39±59.37 112.31±121.76

90° 98.73±85.95 84.99±76.93 108.05±90.61

120° 80.44±67.71 67.72±52.13 89.06±75.43

150° 69.66±51.67 63.10±42.04 74.11±56.98

180° 63.73±50.01 56.96±42.88 68.32±53.95

210° 70.23±56.47 54.87±38.04 80.64±64.15

240° 84.07±62.41 70.70±50.69 93.14±67.90

270° 91.33±80.59 67.64±52.46 107.40±91.77

300° 78.74±63.63 59.70±46.56 91.66±70.22

330° 66.81±57.52 58.55±40.44 72.42±66.19

DLLSS, deep learning located scleral spur; ED, Euclidean distance; MPSS, manually plotted 
scleral spur; PACD, primary angle-closure disease; SS, scleral spur.
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summarised in online supplemental tables 1 and 2, respec-
tively. For DLLSS, the repeatability coefficients were 0.049 mm 
and 0.026 mm2 for AOD750 and TISA750 (figure  1, middle 
column), respectively. For MPSS, the repeatability coefficients 
were 0.058 mm and 0.030 mm2 for AOD750 and TISA750 
(figure 1, right column), respectively. The mean absolute differ-
ence of ACA width between Dark1 and Dark2 based on DLLSS 
was 0.0167±0.0188 mm for AOD750 and 0.0093±0.0093 mm2 
for TISA750 and based on MPSS was 0.0210±0.0212 mm for 
AOD750 and 0.0109±0.0110 mm2 for TISA750. AOD750 and 
TISA750 showed strong association between the two AS-OCT 
scans (figure 2, middle column). The R2 was 0.986 and 0.982 for 
AOD750 and TISA750, respectively, for DLLSS and 0.978 and 
0.974, respectively, for MPSS.

DISCUSSION
Gonioscopy is the current gold standard for the assessment and 
diagnosis of angle closure. Gonioscopy remains useful for eval-
uation of pigment and vascularisation of the angle, along with 
assessment of PAS with indentation. However, gonioscopy is 
a subjective and contact assessment, while AS-OCT provides 
an objective and quantitative approach to evaluate the ACA. 
Currently, the measurements of ACA dimensions rely on the 
localisation of the SS, which still requires subjective judgement. 

In this study, we developed a deep learning model to localise 
the SS automatically in AS-OCT images. We demonstrated the 
reproducible SS localisation, and the reproducible ACA width 
measurements (AOD750 and TISA750) could be achieved with 
CASIA2 AS-OCT images by our deep learning model.

We compared the difference in SS localisation between DLLSS 
and MPSS by calculating the mean ED (77.39±26.94 µm) of 
all angles in the Dark1 dataset. Xu et al2 reported that the 
intra-grader variability of SS localisation on their test dataset 
with 921 images (698 open angle images and 223 images with 
PACD) was 73.08±52.06 µm (normal eyes: 67.37±56.82 µm, 
and eyes with PACD: 94.44±67.70 µm), and the inter-grader 
variability was 97.34±73.29 µm (normal eyes 96.10±70.37 
µm, eyes with PACD 101.21±81.81 µm). We reimplemented 
the method of Xu et al’s,2 trained and tested the ResNet-50 
model with our dataset; the detailed results were presented in 
online supplemental table 3. Including all eyes, our model had 
higher repeatability compared with the study by Xu et al2 in 
Dark1 dataset (for open angle, ours 66.50±20.54 µm vs Xu et 
al’s 108.68±91.08 µm; for no-open angle, ours 84.78±28.33 
µm vs Xu et al’s 125.96±87.94 µm). The data in Xu et al2 were 
collected by SS1000 (CASIA1) in only one instrument, which is 
the first-generation AS-OCT of Tomey Corporation, Japan. Our 
data were collected by CASIA2, the second generation, from five 

Table 3  Comparisons of parameters (mean±SD) between DLLSS based and MPSS based in Dark1 dataset

AOD750 (mm)

Angles

Normal PACD

DLLSS MPSS P value* DLLSS MPSS P value**

Mean 0.390±0.201 0.385±0.193 0.005 0.129±0.077 0.129±0.079 0.968

0° 0.434±0.250 0.433±0.242 0.803 0.150±0.091 0.148±0.093 0.297

30° 0.379±0.205 0.379±0.201 0.980 0.112±0.083 0.112±0.086 0.959

60° 0.340±0.211 0.343±0.200 0.624 0.098±0.082 0.102±0.079 0.312

90° 0.334±0.198 0.318±0.196 0.008 0.103±0.079 0.098±0.082 0.095

120° 0.327±0.194 0.318±0.193 0.023 0.086±0.075 0.085±0.078 0.688

150° 0.341±0.200 0.333±0.193 0.023 0.098±0.083 0.095±0.080 0.193

180° 0.419±0.206 0.409±0.196 0.004 0.143±0.100 0.140±0.104 0.164

210° 0.467±0.243 0.455±0.232 0.003 0.166±0.109 0.170±0.111 0.245

240° 0.381±0.205 0.375±0.185 0.308 0.124±0.104 0.128±0.104 0.229

270° 0.388±0.233 0.385±0.228 0.498 0.124±0.103 0.116±0.105 0.018

300° 0.417±0.226 0.414±0.204 0.601 0.145±0.097 0.152±0.103 0.014

330° 0.464±0.238 0.461±0.230 0.406 0.177±0.101 0.184±0.109 0.019

TISA750 (mm2)

Angles Normal PACD

DLLSS MPSS P value* DLLSS MPSS P value*

Mean 0.177±0.090 0.176±0.087 0.161 0.055±0.038 0.056±0.039 <0.001

0° 0.205±0.115 0.203±0.109 0.542 0.075±0.056 0.076±0.057 0.394

30° 0.175±0.094 0.176±0.094 0.703 0.049±0.049 0.051±0.049 0.056

60° 0.142±0.094 0.147±0.093 0.084 0.034±0.038 0.035±0.037 0.217

90° 0.140±0.091 0.135±0.092 0.065 0.036±0.039 0.037±0.041 0.929

120° 0.144±0.092 0.140±0.093 0.052 0.032±0.039 0.034±0.040 0.077

150° 0.157±0.099 0.152±0.093 0.007 0.042±0.044 0.043±0.044 0.539

180° 0.200±0.098 0.196±0.093 0.047 0.066±0.054 0.065±0.057 0.446

210° 0.211±0.106 0.208±0.105 0.133 0.074±0.057 0.078±0.059 0.009

240° 0.171±0.095 0.170±0.089 0.730 0.049±0.052 0.052±0.053 0.044

270° 0.170±0.106 0.171±0.105 0.613 0.046±0.046 0.043±0.047 0.111

300° 0.191±0.099 0.191±0.093 0.893 0.063±0.052 0.068±0.054 <0.001

330° 0.218±0.105 0.217±0.101 0.786 0.084±0.057 0.089±0.060 <0.001

*Independent t-test.
AOD, angle opening distance; DLLSS, deep learning located scleral spur; MPSS, manually plotted scleral spur; PACD, primary angle-closure disease; TISA, trabecular iris space area.

 on A
pril 16, 2024 by guest. P

rotected by copyright.
http://bjo.bm

j.com
/

B
r J O

phthalm
ol: first published as 10.1136/bjophthalm

ol-2021-319798 on 28 January 2022. D
ow

nloaded from
 

https://dx.doi.org/10.1136/bjophthalmol-2021-319798
https://dx.doi.org/10.1136/bjophthalmol-2021-319798
http://bjo.bmj.com/


806 Liu P, et al. Br J Ophthalmol 2023;107:802–808. doi:10.1136/bjophthalmol-2021-319798

Clinical science

different instruments of four clinical sites. Even if the resolution 
of CASIA2 image is better than of CASIA1 slightly, the perfor-
mance of Xu et al2 proposed that ResNet-50 model was signifi-
cantly poor on our data. ResNet-50 model is a regression-based 
model, which is less robust in key points localisation tasks.14 
The downsampling processing greatly affects the performance 
of deep learning models. The experimental results verified the 
robustness of our heatmap-based model in the Dark1 dataset. 
Our two-stage model addressed the effect from downsampling 
and greatly elevated the SS localisation accuracy. In addition, the 
agreement between DLLSS and MPSS was better at the nasal and 

temporal quadrants than the superior and inferior quadrants, 
which is similar to the result of Cumba et al.4

Our deep learning model prediction errors are with 76% 
(7818/10 332) in 100 µm compared with manual SS points 
and with 90% (9248/10 332) in 150 µm, which were similar 
to Xu et al’s2 (75% fell within 100 µm and 90% within 150 
µm in their test dataset). Cumba et al4 reported that the SS 
location within 80 µm for both X-axis and Y-axis supports a 
95% CI limit of TISA750. Their study reported interobserver 
and intraobserver reproducibility of 77% and 84% within 80 
µm for both the X-axis and Y-axis. Our deep learning model 

Figure 1  Bland-Altman plot of AOD750 and TISA750 with DLLSS and MPSS in Dark1 and Dark2 dataset. AOD, angle opening distance; DLLSS, deep 
learning located scleral spur; MPSS, manually plotted scleral spur; PACD, primary angle-closure disease; TISA, trabecular-iris space area.

Figure 2  Correlation analysis of AOD750 and TISA750 with DLLSS and MPSS in Dark1 and Dark2 dataset. AOD, angle opening distance; DLLSS, deep 
learning located scleral spur; MPSS, manual plotted scleral spur; TISA, trabecular-iris space area.
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SS reproducibility of 79% (3317/4176) within 80 µm for both 
the X-axis and Y-axis with normal angles and 68% (4177/6156) 
with closure angles. Our study was conducted on a large-scale 
dataset of multiple ethnicities, the images are from four clin-
ical centres and obtained with five AS-OCT machines. Our data 
diversity and image quality variety and number of participants 
exceed the data used by Xu et al2 and Cumba et al.4 Pham et al19 
developed a deep learning model for both the SS localisation 
and the anterior segment structures segmentation, and the angle 
width measurements were evaluated. Pham et al19 reported that 
the SS locations by convolutional neural network (CNN) model 
was similar to the graders. Their results are consistent with 
ours. The mean error for SS localisation of our deep learning 
model (evaluated with ED) was 77.39±26.94 µm. Pham et al19 
reported strong correlation between CNN and human grader SS 
locations with intracorrelation coefficient (ICC), and the ED was 
not reported. The reproducibility of angle width measurements 
were evaluated with ICC in19 and with independent t-test in our 
study. Both reproducibility of the measurements obtained with 
the pipeline in19 and measurements obtained with our DLLSS 
were good. Instead of using self-developed software, we evalu-
ated the measurements with CASIA2 embedded software, which 
could be a better reference for the CASIA2 users.

A trained and fixed deep learning model outputs the same SS loca-
tion when fed the same AS-OCT image, that is, the deep learning 
model has no intra-grader variability when facing only one dataset. 
We used two AS-OCT datasets capture in the same visit (Dark1 and 
Dark2) to evaluate the repeatability of DLLSS-based and MPSS-
based ACA parameters (AOD750 and TISA750). In such short 
capture interval, the AS-OCT images of one eye would be slightly 
different (eg, pupil diameter changes), while the ACA parameters 
should still be consistent. To access how the pupil diameter changes 
would impact the ACA measurements (AOD750 and TISA750), 
a linear regression analysis was conducted, and indicated that the 
pupil diameter differences between Dark1 and Dark2 fail to support 
a statistically significant change in ACA measurements, as presented 
in online supplemental material 3. The repeatability of ACA param-
eters with DLLSS (0.049 mm and 0.026 mm2 for AOD750 and 
TISA750) was better than ACA parameters based on MPSS (0.058 
mm and 0.030 mm2 for AOD750 and TISA750). The mean abso-
lute difference of ACA width between Dark1 and Dark2 based on 
DLLSS was statistically significant and smaller than that based on 
MPSS (0.0167±0.0188 mm vs 0.0210±0.0212 mm, p=0.003 
for AOD750, and 0.0093±0.0093 mm2 vs 0.0109±0.0110 
mm2, p=0.018 for TISA750). Our DLLSS was more reproducible 
compared with MPSS and enables the reproducible evaluation of 
ACA parameters. Additionally, our deep learning model can localise 
the SS in 489 ms on Windows 10 machine with Nvidia GeForce 
RTX 2080 8G graphic card, 32 GB RAM, Intel Core i7-9700 CPU, 
which was much faster than a human observer.

Our study is limited by examining individual OCT B-scans 
without taking the locations of SS in other B-scans in the same 
eye into consideration. Including three-dimensional volume 
structural information of the anterior segment may further 
improve the SS localisation performance. Another limitation 
is that only one grader could lead to biased SS localisation. In 
Fu et al,20 the reference SS locations were the mean position of 
multiple graders. However, the mean SS locations could intro-
duce confusions into the ground truth. In our study, the reference 
SS locations were provided by one experienced human grader, 
KO, who had been trained by two experts of ophthalmology, and 
the SS locations verified by RH. This one of our limitations in 
this study, and how to well use the labels from multiple experts, 
is still an important research topic in AI.

In summary, we developed a deep learning model for SS local-
isation and demonstrated that our deep learning model is able to 
locate the SS in CASIA2 AS-OCT images with high repeatability. 
The reproducibility of ACA parameters (AOD750 and TISA750) 
based on DLLSS was comparable with that based on MPSS. Deep 
learning model would provide a more efficient approach to localise 
the SS for measurement of ACA in the clinical evaluation of angle 
closure.
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