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ABSTRACT
Aims  To develop a new intraocular lens power selection 
method with improved accuracy for general cataract 
patients receiving Alcon SN60WF lenses.
Methods and analysis  A total of 5016 patients (6893 
eyes) who underwent cataract surgery at University of 
Michigan’s Kellogg Eye Center and received the Alcon 
SN60WF lens were included in the study. A machine 
learning-based method was developed using a training 
dataset of 4013 patients (5890 eyes), and evaluated 
on a testing dataset of 1003 patients (1003 eyes). The 
performance of our method was compared with that of 
Barrett Universal II, Emmetropia Verifying Optical (EVO), 
Haigis, Hoffer Q, Holladay 1, PearlDGS and SRK/T.
Results  Mean absolute error (MAE) of the Nallasamy 
formula in the testing dataset was 0.312 Dioptres 
and the median absolute error (MedAE) was 0.242 
D. Performance of existing methods were as follows: 
Barrett Universal II MAE=0.328 D, MedAE=0.256 
D; EVO MAE=0.322 D, MedAE=0.251 D; Haigis 
MAE=0.363 D, MedAE=0.289 D; Hoffer Q MAE=0.404 
D, MedAE=0.331 D; Holladay 1 MAE=0.371 
D, MedAE=0.298 D; PearlDGS MAE=0.329 D, 
MedAE=0.258 D; SRK/T MAE=0.376 D, MedAE=0.300 
D. The Nallasamy formula performed significantly better 
than seven existing methods based on the paired 
Wilcoxon test with Bonferroni correction (p<0.05).
Conclusions  The Nallasamy formula (available 
at https://lenscalc.com/) outperformed the seven 
other formulas studied on overall MAE, MedAE, and 
percentage of eyes within 0.5 D of prediction. Clinical 
significance may be primarily at the population level.

INTRODUCTION
Cataract surgery is the most commonly performed 
surgical procedure in the United States (approx-
imately 4 million/year) and worldwide (approxi-
mately 23 million/year). The appropriate selection 
of intraocular lens (IOL) power based on accurate 
prediction of postoperative refraction is necessary 
for achieving a favourable refractive outcome and is 
closely associated with patient satisfaction. An inap-
propriate IOL power was found to be the indication 
for approximately 20% of cataract surgery cases 
that required secondary intervention, lens removal 
or lens exchange, according to analyses of records 
between 2002 and 2017.1 2

Various generations of IOL power calculation 
formulas have been published since the 1960s. 
From the earliest regression formulas (Binkhorst 
formula, SRK formula) to the fourth and fifth 

generation of vergence formulas which established 
the effective lens position (ELP) as a function of the 
axial length, lens thickness (LT) and keratometry, 
the accuracy of IOL power calculation has been 
substantially improved. Among existing formulas, 
the Barrett Universal II formula3 is widely used 
and several publications have demonstrated that 
Barrett Universal II has greater accuracy than 
other traditional formulas.4 5 In addition to the 
above-mentioned formulas, a number of new IOL 
formulas have been published recently, such as the 
Emmetropia Verifying Optical (EVO) formula,6 
which is a theoretical thick lens formula, and the 
PearlDGS formula,7 8 which is a machine learning 
(ML)-based thick lens calculation method.

Although the methodology for IOL power selec-
tion has been studied for decades, patient expec-
tations for refractive outcomes continue to rise 
and room remains for improvement in refraction 
prediction performance. ML and artificial intel-
ligence have proven to be successful in many 
medical applications, including ophthalmology.9 10 
Researchers have begun to incorporate ML into 
IOL power calculations in recent years.

However, key limitations exist among recently-
published ML-based IOL calculation methods: (1) 
performance comparisons limited to older gener-
ation formulas,11 (2) failure to achieve statistically 
significant improvement over current generation 
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formulas,12 and (3) small datasets that leave the robustness and 
generalisability of methods in question.13

With a goal of advancing the understanding of IOL power 
selection for general cataract patients and improving refraction 
prediction accuracy, in this study, we developed a novel ML-based 
IOL power calculation method, the Nallasamy formula, based 
on a large dataset of 5016 cataract patients. In this model, we 
employed ensemble ML methods and novel data augmentation 
methods. The performance of our method was compared with 
that of Barrett Universal II, EVO, Haigis, Hoffer Q, Holladay 
1, PearlDGS, and SRK/T on an unseen testing dataset of 1003 
patients.

MATERIALS AND METHODS
Data collection and preprocessing
This study focused on a subset of patients receiving care at the 
University of Michigan between 25 August 2015 and 27 June 
2019. The preoperative biometry records were obtained from 
Lenstar LS 900 optical biometers (Haag-Streit USA, EyeSuite 
software V.i9.1.0.0) at University of Michigan’s Kellogg Eye 
Center. Patient demographics (including patient age, gender and 
ethnicity) and cataract surgery information were obtained via the 
Sight Outcomes Research Collaborative (SOURCE) Ophthal-
mology Data Repository. SOURCE is a data repository that tracks 
the electronic health record data of all patients receiving any eye 
care at participating academic medical institutions. The informa-
tion deposited in SOURCE includes patient demographics, diag-
noses identified based on International Classification of Diseases 
codes, procedures based on Current Procedural Terminology 
(CPT) codes, and structured and unstructured (free-text) data 
from all clinical encounters (clinic visits, operative reports, etc). 
Various studies using data from SOURCE were published.14–18 
Manifest refractions were performed at the end of the first post-
operative month by trained technicians employed by University 
of Michigan’s Kellogg Eye Center. Manifest refraction data was 
obtained through the SOURCE repository.

The inclusion criteria for the cases were as follows: (1) Cata-
ract surgery was performed (CPT code=66 982 or 66984); 
(2) An Alcon SN60WF one-piece acrylic monofocal lens was 
implanted, (3) No refractive surgery was performed before the 
cataract surgery; (4) No additional surgery was performed at the 
time of cataract surgery. Cases with any CPT code other than 
66 982 or 66 984 were excluded; (5) Visual acuity was 20/40 or 

better and (6) Data were complete and was not out of bounds 
for any of the formulas with which performance was compared.

Stacking ensemble ML framework
After all preprocessing steps, we obtained a clean tabular dataset 
of 5016 patients wherein each eye had a complete profile of 
preoperative biometry, patient demographics (patient gender 
and age), the power of the implanted IOL and the postoperative 
refraction. Preoperative biometry included the axial length (AL), 
crystalline LT, anterior chamber depth (ACD), aqueous depth, 
astigmatism, white-to-white, central corneal thickness, and 
keratometry (K1 and K2, ‍K =

(
K1 + K2

)
/2‍). The postoperative 

refraction was calculated from the spherical component (SC) 
and the cylindrical component (CC) with an adjustment with 
regard to the lane length at Kellogg Eye Center (10 ft, 3.048 m): 

‍spherical equivalent (SE) refraction =
(
SC− 0.1614

)
+ 0.5CC‍ 

according to Simpson and Charman’s recommendation.19

The prediction task was framed as a regression problem where 
the goal was to build an ML algorithm that predicts the post-
operative refraction using available information. The value to 
be predicted is referred to as the target value (represented as 
Y in figure 1) and the inputs that are used to make the predic-
tions are referred to as features or predictors (represented as X 
in figure 1). The dataset was randomly split into a training/vali-
dation set with 4013 patients (5890 eyes) which was 80% of all 
patients, and a testing set with 1003 patients which was 20% of 
all patients (figure 1). In order to make sure all samples in the 
testing set were independent, one eye was selected at random 
and dropped from the dataset for all patients with both eyes 
available in the dataset. The training/validation set was used for 
cross-validation and hyperparameter selection of the ML model. 
The testing set was used for performance comparison between 
the existing formulas and our ML-based method.

Ensemble learning is a technique that involves combining the 
predictions from base learners with the goal of reducing variance 
and achieving improved prediction performance. An ensemble 
model is usually believed to outperform individual learners in 
most cases.20 Stacking (or stacked generalisation) is one of the 
most commonly used meta-learning paradigms, where a number 
of base-learners are trained using the raw training data and a 
single meta-learner is trained to combine the predictions from 
the base-learner.21 The reason for using an ensemble ML model 
in this study is to take advantage of different classes of ML 

Figure 1  The overall method pipeline. IOL, intraocular lens.

 on A
pril 23, 2024 by guest. P

rotected by copyright.
http://bjo.bm

j.com
/

B
r J O

phthalm
ol: first published as 10.1136/bjophthalm

ol-2021-320599 on 4 A
pril 2022. D

ow
nloaded from

 

http://bjo.bmj.com/


1068 Li T, et al. Br J Ophthalmol 2023;107:1066–1071. doi:10.1136/bjophthalmol-2021-320599

Clinical science

algorithms and improve the overall performance of the model. 
The stacking model consists of two layers. In the first layer a 
group of level-1 learners was trained based on the raw data 
(preoperative patient data and the postoperative refraction). The 
second layer consists of the metamodel which uses the output of 
the level-1 learners as the input features. Therefore, the number 
of input features for the level-2 model equals the number of 
level-1 models. The output from the level-2 meta-model is the 
final prediction result (figure 1).

Lens constant optimisation of existing IOL formulas
The existing formulas Haigis, Hoffer Q, Holladay 1, SRK/T were 
implemented in Python based on their specific equations.22–29 
The results obtained were validated against printouts from 
Haag-Streit USA, EyeSuite software V.i9.1.0.0. The prediction 
results of Barrett Universal II,3 EVO (V2.0)6 and PearlDGS7 8 
were obtained through their online calculators. The constants of 
the corresponding formulas were optimised based on the cases in 
the training dataset (4013 patients). The most optimal constant 
was selected by zeroing the mean prediction error. The opti-
mised constants are listed in table 1.

Cross-validation and hyperparameter tuning
During the development of the ML model, we performed model 
evaluation and selection through five-fold cross-validation. 
During the cross-validation, 4013 training/validation cases were 
divided into training sets and validation datasets. A random eye 
was removed for patients with both eyes available in the valida-
tion dataset. The optimisation of hyperparameters of the ML 
models, the combination of the level-1 models, and the selection 
of the level-2 model were performed by minimising the averaged 
mean absolute error (MAE) based on the cross-validation results.

Performance comparison on the testing set
To compare the performance between our method and existing 
IOL formulas, we trained the ML-model with the entire training 
dataset (5890 eyes) and made predictions on the testing dataset. 
We calculated the mean arithmetic error (ME), MAE, median 
absolute error (MedAE) of the postoperative refraction predic-
tions and the SD of the prediction error. We also calculated the 
number and percentage of patients with an absolute prediction 
error of less than or equal to 0.25 D, 0.50 D, 0.75 D and 1.00 
D, and evaluated the statistical significance of the difference 
between formulas with Cochran’s Q test. The statistical signif-
icance of the difference between the testing set performance of 
the IOL formulas was assessed using a Friedman test followed 
by a paired Wilcoxon test with Bonferroni correction. To inves-
tigate the performance of our method in cases with different 
axial lengths, we calculated the SD, ME, MAE, and MedAE for 

patients in the short AL group (AL<22 mm), medium AL group 
(22 mm ≤AL ≤ 26 mm) and long AL group (AL>26 mm). In 
addition to the above metrics, we calculated the slope of the 
correlation between the arithmetic error and AL as ﻿‍m‍. Using the 
above variables, we computed the IOL Formula Performance 
Index (FPI) as recommended by Hoffer and Savini30 for each 
formula as follows, where ﻿‍n‍ is the percentage of eyes with an 
absolute error within 0.5 D. Higher FPI means better accuracy.

	﻿‍
FPI = 1

SD+MedAE+10∗abs
(
m
)
+10∗

(
n10

)−1
‍�

To investigate the effect of the size of the training data on 
the performance of the ML model, we randomly sampled 10%, 
20%, …, 90% of the training data, then retrained and compared 
the alternative models’ results on the testing set. The propor-
tions of training cases were adjusted before the application of 
data augmentation and data transformation techniques. All 
other configurations and hyperparameters were kept the same 
for alternative models except for the number of training cases.

In this study, the refraction prediction error was defined as 
follows. The criterion for statistical significance was p<0.05. All 
statistical analyses were scripted with Python V.3.9.5.
	﻿‍ error = true postoperative refraction− predicted postoperative refraction‍�

RESULTS
Out of 5016 patients, 4013 patients (5890 eyes) were assigned 
to the training/validation dataset, and 1003 cases were isolated 

Table 1  The optimised lens constants

Formula Constant Value

Barrett Lens factor 1.94

EVO A constant 119.0

Haigis a0, a1, a2 −0.739, 0.234, 0.217

Hoffer Q Personalised ACD 5.727

Holladay 1 Surgeon factor 1.860

PearlDGS IOL A constant 119.1

SRK/T A constant 119.082

ACD, anterior chamber depth; EVO, Emmetropia Verifying Optical; IOL, intraocular 
lens.

Table 2  Summary of patient demographics

Characteristic Training set (mean±SD) Testing set (mean±SD)

Count 5890 eyes, 4013 patients 1003 eyes, 1003 patients

Gender Male: 2573 eyes (43.7%),
Female: 3317 eyes (56.3%)

Male: 433 eyes (43.2%),
Female: 570 eyes (56.8%)

Age at surgery (years) 71.00±9.43 70.73±9.50

Preoperative K (D) 43.87±1.54 43.88±1.56

Preoperative AL (mm) 24.17±1.34 24.15±1.35

Preoperative LT (mm) 4.53±0.44 4.53±0.45

Preoperative ACD (mm) 3.26±0.41 3.25±0.41

Postoperative refraction (D) −0.55±0.85 −0.59±0.93

ACD, anterior chamber depth; AL, axial length; D, dioptre; K, keratometry; LT, lens 
thickness.

Table 3  Performance summary in the testing set

MAE MedAE ME SD m AE ≤0.5 D FPI P value

Barrett 0.328 0.256 0.038 0.437 0.307 78.3% 0.198 <0.05

EVO 0.322 0.251 0.043 0.427 0.128 79.8% 0.312 <0.05

Haigis 0.363 0.289 0.024 0.469 0.226 74.7% 0.230 <0.05

Hoffer Q 0.404 0.331 0.009 0.518 0.951 70.3% 0.085 <0.05

Holladay 1 0.371 0.298 0.021 0.487 0.773 74.0% 0.101 <0.05

PearlDGS 0.329 0.258 0.044 0.438 0.408 77.7% 0.165 <0.05

SRK/T 0.376 0.300 0.014 0.485 0.486 73.2% 0.143 <0.05

Our method 0.312 0.242 0.015 0.418 −0.033 80.2% 0.447 /

SD: the standard deviation of the signed prediction error; m: the axial length bias, 
computed as the slope of the correlation between the arithmetic error and al; 
AE ≤0.5 D: percentage of eyes with an AE less than or equal to 0.5 D. The unit for 
the errors is dioptres (D). Wilcoxon test p<0.05 indicates the statistical significance 
of the difference between the performance of our method and an existing method.
AE, absolute error; D, dioptre; EVO, Emmetropia Verifying Optical; FPI, Formula 
Performance Index; MAE, mean absolute error; ME, mean error; MedAE, median 
absolute error.
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as a hold-out testing dataset for performance comparison. A 
summary of the patient demographics in the training and testing 
sets is shown in table 2. A total of 49 surgeons performed the 
surgeries included in dataset. The distribution of data is shown 
in online supplemental figure S1.

The performance of our method and existing methods is 
shown in table 3. According to the Wilcoxon test, our method 
performed significantly better than all the other seven methods 
with an MAE of 0.312 D, which was 4.9% lower than that of 
Barrett (0.328 D) and 3.1% lower than that of EVO (0.322 D). 
The specific p values can be found in online supplemental table 
S1. Our method also achieved the highest FPI.

The percentage of patients with an absolute error less than 
or equal to 0.25 D, 0.50 D, 0.75 D and 1.00 D is shown in 
figure 2. Our method resulted in a larger percentage of patients 
in the absolute error  ≤0.5 D group (80.2%) compared with 
Barrett (78.3%), EVO (79.8%) and PearlDGS (77.7%), and a 
larger percentage of patients in the absolute error ≤1.0 D group 
(97.6%) compared with Barrett (96.6%), or EVO (96.9%) and 
PearlDGS (97.4%). Overall, our method achieved the highest 
percentage in the absolute error ≤0.5 D group among all eight 
formulas, and was statistically better than all other formulas 
except EVO (Cochran’s Q test p values were shown in online 
supplemental table S2) on this metric.

We compared the performance of the tested formulas among 
patients with different axial lengths in table 4. Numerically, our 
method achieved the lowest MAEs and SDs among all eight 
formulas in all 3 AL groups. The relationship between the 

prediction errors and the ALs is shown in figure 3. The errors of 
our method remained close to zero across the whole span of ALs.

When the model was trained with different proportions of 
the training data (figure 4), the corresponding performance on 
the testing set displayed a trend towards improving performance 
(decreased MAE) with increasing training set sizes.

DISCUSSION
We have presented here a new ML-based IOL power calcula-
tion method which performs statistically significantly better 
than Barrett Universal II, EVO (V.2.0) and PearlDGS on a large 
unseen testing dataset. We chose an ensemble ML framework 
for this particular problem, and this choice allows the method to 
compensate for the potential biases of individual learners. During 
the development of the model, we designed and applied several 
data augmentation methods to enhance prediction performance. 
Data augmentation methods are not only beneficial for enlarging 
the dataset size, but also to address natural imbalances in clinical 
datasets. The biometry measures are not uniformly distributed as 
shown in online supplemental figure S1. For example, the axial 
length has more instances in the medium group (between 22 mm 
and 26 mm) compared with the long and short AL groups. The 
postoperative refractions and the implanted IOL powers were 
not uniformly distributed either. All IOL powers in the dataset 
were manually selected by surgeons with a particular target 
refraction in mind, typically between 0 D and −3 D. Data 

Figure 2  The percentage of patients in each error category for each 
formula, calculated based on the results in the testing dataset. EVO, 
Emmetropia Verifying Optical.

Table 4  The postoperative refraction prediction performance of existing formulas and our method in short/medium/long al groups in the testing 
set

Method

Short AL (<22.0 mm, n=32) Medium AL (≥22.0 and ≤26.0 mm, n=878) Long AL (>26.0 mm, n=93)

MAE MedAE ME SD MAE MedAE ME SD MAE MedAE ME SD

Barrett 0.401 0.259 −0.108 0.543 0.325 0.255 0.032 0.434 0.332 0.259 0.142 0.402

EVO 0.390 0.277 −0.088 0.514 0.319 0.250 0.043 0.424 0.330 0.269 0.086 0.410

Haigis 0.429 0.380 −0.029 0.551 0.360 0.285 0.012 0.466 0.369 0.295 0.156 0.437

Hoffer Q 0.653 0.577 −0.494 0.623 0.381 0.310 −0.015 0.486 0.532 0.442 0.407 0.520

Holladay 1 0.520 0.500 −0.241 0.592 0.346 0.280 −0.021 0.452 0.549 0.489 0.505 0.473

PearlDGS 0.426 0.402 0.170 0.564 0.320 0.250 0.040 0.426 0.387 0.320 0.154 0.468

SRK/T 0.513 0.491 −0.198 0.592 0.368 0.294 −0.005 0.476 0.402 0.322 0.273 0.430

Our method 0.380 0.314 −0.050 0.512 0.310 0.238 0.015 0.417 0.312 0.269 0.041 0.389

AL, axial length; EVO, Emmetropia Verifying Optical; MAE, mean absolute error; ME, mean error; MedAE, median absolute error; n, number of eyes in each group; SD, standard 
deviation of the signed prediction error.

Figure 3  The mean prediction errors in the testing set grouped based 
on axial lengths. Each dot represents the mean prediction error of 
eyes with an axial length between a specific range. EVO, Emmetropia 
Verifying Optical.
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augmentation helps to account for the scarcity of extreme cases 
and biases introduced by clinical decision-making process.

In this study, we used a relatively large dataset of 6893 eyes. 
Evaluation of the relationship between the proportion of the 
available training data used and MAE demonstrated the expected 
inverse relationship. This trend continued even as the training 
set was increased from 90% to 100% of the available training 
data (figure 4), indicating the potential for further improvement 
as the same model is exposed to larger datasets.

We achieved lower MAEs than Barrett Universal II, PearlDGS, 
and EVO in all three axial length groups. Our method yielded 
80.2% of eyes with a predicted refraction within ‍± 0.5 D‍ of 
the true refraction, which was approximately 2% more than 
that of Barrett (78.3%) (p=0.04). The Nallasamy formula also 
achieved 51.2% of eyes within ‍± 0.25 D‍, which was approx-
imately 2% more than that of all other methods (next closest 
was EVO at 49.3%). Due to sheer volume of cataract surgery 
worldwide—23 million cataract surgeries each year—achieving 
an additional 2% of patients with refractive error less than 0.25 
D would likely be clinically relevant at a population level. At the 
same time, the difference in MAE between our method and the 
next closest (EVO) of 0.010 D is not likely to be of clinical signif-
icance for the average patient. This discrepancy in clinical rele-
vance appears to arise from the difference between the average 
patient and the overall population. Table 4 demonstrates that the 
differences in MAE are smaller in the medium axial length group 
than in the short and long axial length groups. Since there are 
far more patients in the medium axial length group than in the 
short and long axial length groups, the reported MAE reflects 
the smaller difference in errors in the more common medium 
axial length group. The overall difference in percentage of 
patients with errors less than 0.25 D is reflective of larger errors 
typically seen in the short and long axial length groups. Figure 3 
highlights the divergence in prediction error of the Nallasamy 
formula and other methods at the limits of axial length.

Recently, Hoffer et al proposed in Ophthalmology the use of 
the FPI as a means of evaluating and ranking the performance of 
IOL power calculation methods.30 Higher values of the FPI indi-
cate higher performance. Our method strongly outperformed 
the existing formulas on FPI, achieving a 0.447 FPI while the 
existing formulas ranged from 0.085 to 0.312 (table 3). The FPI 
takes into account the (1) SD of the prediction error, (2) the 
MedAE, (3) the AL bias, and (4) the percentage of eyes with 
refraction predictions within 0.5 D of true refractions. Our 
method demonstrated superior performance on each of these 

individual metrics, as summarised in table 3. Of particular note 
is our method’s superior SD of the prediction error, which 
Holladay et al recently referred to as “the single best parameter 
to characterise the performance of an IOL power calculation 
formula.”31

Also of interest is the AL bias, which is calculated as the 
slope of the correlation of the AL and the prediction error for 
a given formula. The existing IOL formulas demonstrate strong 
correlations between AL and the prediction error, as depicted 
in figure 3. ML-based methods such as ours, on the other hand, 
have the potential to better capture the nonlinearity of the rela-
tionship between biometric variables, IOL power, and postop-
erative refraction, resulting in substantially smaller AL bias (eg, 
−0.03 for Nallasamy vs 0.31 for Barrett). This translates to 
improved performance across AL categories (short, medium, and 
long), and should obviate the need for using different formulas 
based on axial length.

We are aware of multiple limitations of our study. Our method 
has not yet been validated on a dataset from a different medical 
institution. Performance analysis on external datasets will be 
a focus of future work as we begin to apply our approach to 
different populations around the world. Another limitation is 
that we were not able to compare our performance with a few 
formulas such as Hill-RBF because of a lack of access. However, 
prior studies indicate that Barrett Universal II is a good reference 
point for top-tier IOL formulas.4 5 32 An additional limitation is 
that at present, our method has been customised for the Alcon 
SN60WF lens, and additional data will be needed to adjust the 
method for additional lens models. We were not able to test 
the Nallasamy formula’s performance on eyes with extremely 
long or extremely short axial lengths due to a lack of available 
data in our dataset. Considering the Nallasamy formula was not 
trained with those eyes either, we believe the Nallasamy formula 
is currently not suitable to be used for extreme eyes. The online 
Nallasamy formula calculator (available at https://lenscalc.com/) 
displays a warning message if AL is outside the range of 21 mm 
- 31.5 mm. Similarly, a warning is displayed if the K readings are 
outside the range of 37 D–52 D.

An intrinsic difference between ML-based methods and the 
vergence formulas is that vergence formulas estimate the ELP as 
a vital variable during the calculation of the postoperative refrac-
tion, but ML-based methods usually take a one-step approach for 
prediction, unless the model is specifically designed to predict 
both the ELP and the postoperative refraction. In previously 
published work, we reported the development of an ML-based 
method for postoperative ACD estimation.16 17 However, the 
method presented here does not rely on prediction of a post-
operative ACD or ELP as an intermediate variable, unlike the 
vergence formulas. This approach may allow the ML method 
to avoid the propagation of errors (however small) introduced 
during the prediction of the postoperative ACD or ELP.

While the theoretical optics-based methods remain crucial for 
special cases, ML offers improved performance for large popu-
lations through the identification of latent patterns in historical 
data that can go unrecognised by existing methods. To that end, 
we have reported here the successful development and testing 
of an ML-based approach to IOL power calculation for cata-
ract surgery that outperforms Barrett Universal II, PearlDGS and 
EVO on all broadly accepted metrics of IOL calculation perfor-
mance. The Nallasamy formula is now freely available to the 
public to use online at https://lenscalc.com/.
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