Article Text

Download PDFPDF
Spatial classification of glaucomatous visual field loss.
  1. D. B. Henson,
  2. S. E. Spenceley and
  3. D. R. Bull
  1. Department of Ophthalmology, University of Manchester.

    Abstract

    AIMS--To develop and describe an objective classification system for the spatial patterns of visual field loss found in glaucoma. METHODS--The 560 Humphrey visual field analyser (program 24-2) records were used to train an artificial neural network (ANN). The type of network used, a Kohonen self organising feature map (SOM), was configured to organise the visual field defects into 25 classes of superior visual field loss and 25 classes of inferior visual field loss. Each group of 25 classes was arranged in a 5 by 5 map. RESULTS--The SOM successfully classified the defects on the basis of the patterns of loss. The maps show a continuum of change as one moves across them with early loss at one corner and advanced loss at the opposite corner. CONCLUSIONS--ANNs can classify visual field data on the basis of the pattern of loss. Once trained the ANN can be used to classify longitudinal visual field data which may prove valuable in monitoring visual field loss.

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.