Article Text

Download PDFPDF
The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer
  1. Adrian L Jonesa,
  2. Nick J L Sheena,
  3. Rachel V Northa,
  4. James E Morgana,b
  1. aRetinal Imaging Laboratory, Department of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3YJ, UK, bDepartment of Ophthalmology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XW, UK
  1. Mr James E Morgan, Department of Ophthalmology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XW, UKMorganJE3{at}


BACKGROUND/AIMS To determine the reproducibility of the Humphrey optical coherence tomography scanner (OCT), software version 5.0, for measurement of retinal nerve fibre layer (RNFL) thickness in normal subjects and to compare OCT measurements with published histological thickness of the human RNFL.

METHODS Three independent measurements were obtained at each session for one eye from 15 normal subjects with a mean age of 30.8 (SD 10.9) years. Scans were taken in the peripapillary retina using the default setting (1.74 mm radius from centre of the optic disc) and were repeated 1 week later. Additional scans were obtained at the optic nerve head (ONH) margin overlying the scleral rim, for comparison with available histological data on the human RNFL.

RESULTS For the 1.74 mm circular scan, the mean coefficient of variation (COV) for the global RNFL thickness measurement was 5% (SD 3%). This increased to 8% (3%) for quadrant measurements and to 9% (3%) with further subdivision into 12 segments. Significant differences (p<0.05) between sessions were only found when the data were divided into segments. The mean RNFL thickness for the 1.74 mm scan was 127.87 (9.81) μm. The RNFL was maximal at the superior disc pole, 161.44 μm (14.8), and minimal at the temporal pole, 83.1 (12.8) μm. Peak thickness values occurred superior temporal and inferior temporal to the vertical axis. RNFL thickness for every sector of the disc was greatest at the margin of the optic disc (mean 185.79 μm; SD 32.61). Although the variation in RNFL thickness around the disc follows published histology data, the OCT underestimates RNFL thickness by an average of 37% (SD 11; range 21–48%).

CONCLUSION The OCT provides reproducible measurement of the retinal structures that are consistent with the properties of the RNFL. However, comparison with available studies of RNFL thickness in the human suggests that in its present form, the OCT underestimates RNFL thickness. Further refinement of this technology is required to improve the accuracy with which the OCT measures retinal nerve fibre layer thickness.

  • optical coherence tomography
  • retinal nerve fibre layer
  • imaging
  • glaucoma

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.