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Figure 3  Boxplots of parafoveal capillary density in different study 
groups. (A) Total parafoveal capillary density measured in the entire 
image excluding the foveal avascular zone (FAZ) area. (B) Temporal 
quadrant. (C) Nasal quadrant. (D) Superior quadrant. (E) Inferior 
quadrant. Significant p values for the post hoc pairwise comparisons 
after non-parametric Kruskal-Wallis tests are shown; all other 
comparisons were not significant (p>0.05). NP-SCR, non-proliferative 
sickle cell retinopathy; P-SCR, proliferative sickle cell retinopathy.

Figure 4  Boxplots show horizontal and vertical asymmetries of 
parafoveal capillary density (A, B), per cent yellow area (C, D) and 
per cent red area (E, F) measured at opposite quadrants in different 
study groups. (Left column) Temporal versus nasal quadrants. (Right 
column) Superior versus inferior quadrants. Only the temporal quadrant 
showed significantly lower parafoveal capillary density compared with 
the nasal quadrant in the proliferative sickle cell retinopathy (P-SCR) 
group. Temporal quadrant showed significantly higher per cent yellow 
area compared with the nasal quadrant in both non-proliferative sickle 
cell retinopathy (NP-SCR) and P-SCR groups. Significant p values for 
Wilcoxon signed-rank test are shown; all other comparisons were not 
significant (p>0.05).

of age and race-matched controls in the prior studies. In agreement 
with prior OCT-A studies, however, both NP-SCR and P-SCR 
groups showed significantly higher FAZ acircularity index due to 
the increased parafoveal capillary tortuosity at the FAZ border, 
suggesting that FAZ acircularity index may be a more sensitive 
metric to discriminate SCR from control (figure 2C).

In this study, we employed a unique quantitative approach 
which measured parafoveal capillary density only after the removal 
of larger blood vessels. This was performed in a quadrant-specific 
manner to investigate whether parafoveal capillary dropout 
preferentially affects particular areas of the macula in SCR. As 
expected, parafoveal capillary density was found to be lowest in 
the P-SCR group, followed by the NP-SCR and control group 
compared with healthy controls. In comparison of parafoveal 
capillary density measured at four quadrants, both NP-SCR and 
P-SCR groups showed significantly lower density compared with 
the control group in all four quadrants (figure 3). Prior studies have 
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Table 3  Area under the receiver operating characteristic (AUROC) 
curve analyses of the FAZ metrics, parafoveal capillary density and 
per cent area deviated from normal distribution in differentiating eyes 
without SCR (control) and eyes with SCR (NP-SCR and P-SCR)

Measurements AUROC (95% CI)

FAZ Area 0.58 (0.43 to 0.73)

Perimeter 0.69 (0.57 to 0.82)

Acircularity index 0.82 (0.72 to 0.92)

Parafoveal capillary density Entire image 0.87 (0.78 to 0.96)

Temporal 0.86 (0.77 to 0.95)

Nasal 0.85 (0.76 to 0.94)

Superior 0.85 (0.76 to 0.94)

Inferior 0.83 (0.72 to 0.94)

Per cent yellow area Entire image 0.85 (0.75 to 0.94)

Temporal 0.86 (0.76 to 0.95)

Nasal 0.81 (0.71 to 0.91)

Superior 0.84 (0.74 to 0.94)

Inferior 0.73 (0.61 to 0.85)

Per cent red area Entire image 0.84 (0.75 to 0.94)

Temporal 0.82 (0.73 to 0.92)

Nasal 0.83 (0.72 to 0.93)

Superior 0.82 (0.72 to 0.92)

Inferior 0.73 (0.59 to 0.86)

CI, confidence interval; FAZ, foveal avascular zone; NP-SCR, non-proliferative SCR; 
P-SCR, proliferative SCR; SCR, sickle cell retinopathy.

Figure 5  Comparison of parafoveal capillary density and deviation 
maps in (top row) healthy control, (middle row) NP-SCR and (bottom 
row) P-SCR. (Left column) Contrast-stretched full vascular slab OCT-A. 
(Middle column) Parafoveal capillary density maps with non-capillary 
blood vessels indicated in white due to the exclusion from density 
computation. (Right column) Corresponding deviation maps. Parafoveal 
capillary density below 5% and 1% of the normative database is 
indicated in yellow and red, respectively. While parafoveal capillary 
density decreases, total area below 5% and 1% of normal distribution 
increases with increasing SCR severity. The temporal aspect of the 
parafovea is to the left in all images. NP-SCR, non-proliferative sickle 
cell retinopathy; OCT-A, optical coherence tomography angiography; 
P-SCR, proliferative sickle cell retinopathy.

demonstrated that retinal thinning temporal to the fovea is asso-
ciated with peripheral neovascularisation in SCR.15 30 Our obser-
vation of horizontal asymmetry with lower parafoveal capillary 
density at the temporal retina than the nasal retina in P-SCR group 
supports the prior observation that capillary dropout is more prev-
alent in the temporal retina than the nasal retina (figure 4A). It is 
worth noting that no vertical asymmetry was observed in both SCR 
groups (figure 4B).

While measurements of parafoveal capillary density using 
OCT-A have become more common in the literature, the clinical 
significance of these measurements remains unclear given the lack 
of comparison to normative values. This study is the first to analyse 
parafoveal capillary density data in a deviation map comparing 
SCR to age and race-matched controls. Our normative-based 
deviation mapping method specifically depicts areas with para-
foveal capillary density below 1% (red) and 5% (yellow)of the 
normal distribution, highlighting areas which are most likely to 
be abnormal (figure 5, right column). Figure 5 shows that while 
parafoveal capillary density decreases (middle column), total area 
below 5% and 1% of normal distribution increases with increasing 
SCR severity (right column). Measurements of regions severely 
deviated from normal distribution appear to be a more sensitive 
method for detecting horizontal asymmetry in both NP-SCR and 
P-SCR groups as compared with using parafoveal capillary density 
alone (figure 4C,E).

Notably, our findings did not show statistical significant differ-
ences between the NP-SCR and P-SCR groups for any comparisons 
of FAZ metrics or parafoveal capillary density measurements. We 
attribute this to the random sampling of the tested eye from the 
control and SCR groups. To avoid interocular correlation, only one 
eye was selected randomly from each participant when both eyes 
were available. However, prior studies have observed that signifi-
cant interocular asymmetry of FAZ metrics in healthy controls and 
disease severity in SCR may exist within the same individual.7 28 
Interocular asymmetry together with the random sampling may 

have reduced the ability to detect statistical significant difference 
between the NP-SCR and P-SCR groups due to higher data vari-
ability. Additional studies evaluating the degree of interocular 
asymmetry in eyes with SCR might prove useful for determining 
the more representative eye to grade the extent of disease.

There were a number of limitations to be noted in this study. 
First, the relatively small sample size restricted our ability to 
substratify patients with sickle cell according to the Goldberg clas-
sification of five different stages of retinopathy. Second, there may 
have been some artefactual effect on capillary recording due to 
the reported reduced blood flow velocity in patients with sickle 
cell disease.31–34 Some non-perfused capillaries in the patients 
with SCR may have been the result of blood flow velocities below 
the detection threshold of the OCT-A system rather than due to 
non-perfusion. This may have led to an overestimation of FAZ 
metrics and parafoveal capillary dropout. Third, individual axial 
length was not obtained for the correction of ocular magnifica-
tion, reducing the accuracy of the FAZ metrics and parafoveal 
capillary density measurements.17 35 Finally, a full vascular slab 
containing both superficial and deep microvascular networks was 
used for measurement of parafoveal capillary density. While this 
approach has been successful in reducing artefactual non-perfusion 
in patients with macular oedema due to poor OCT layer segmen-
tation in diabetes or vein occlusion, it does not take advantage of 
OCT-A’s ability to measure superficial and deep vascular layers 
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individually. Since sickle cell maculopathy does not take the form 
of cystic oedema which displaces retinal layers on OCT scans, 
modifying the method in future studies to look at individual capil-
lary layers might enhance the sensitivity of the technique for this 
disease.

In summary, our customised OCT-A image processing analysis 
highlights significant quantitative alterations in perfusion density 
mapping in a qualitative display, with minimal obscuration in 
OCT-A image detail. Regardless of the retinopathy stage, FAZ 
acircularity index appeared higher in patients with SCR when 
compared with controls. Our findings confirmed the observation 
of horizontal asymmetry with lower parafoveal capillary density in 
the temporal retina associated with the presence of neovasculari-
sation in eyes with SCR. The application of normative-based para-
foveal capillary density deviation mapping in patients with SCR 
shows promise for immediate qualitative and quantitative assess-
ments of SCR, which may prove useful for clinical management.
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