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Figure 3  Exemplary case of local precursor phenotype 3 in 
multimodal imaging (same arrangement of images as in figure 1). 
Annual follow-up visits (rows A–D) show refractile deposits preceding 
the development of geographic atrophy. Spectral-domain optical 
coherence tomography (SD-OCT) imaging (column 4, each row) 
demonstrates pyramidal structures (‘ghost drusen’) at the level of 
the retinal pigment epithelium with progressive disruption of the 
outer retinal bands over time as well as fading of the laminar intense 
hyperreflectivity associated with the occurrence of traces of choroidal 
hypertransmission. The position of the SD-OCT line scan in the en face 
images is represented as a green line. Figure 4  A follow-up period of 5 years with annual follow-up visits 

(A–F) highlights precursor phenotype 4 of a central pigment-epithelial 
detachment (PED) with fulminant collapse. Same arrangement of 
images as in figure 1. Central hyperpigmentary clumping is seen 
in colour fundus photography on top of the PED, while fundus 
autofluorescence shows a corresponding cartwheel-like configuration 
of increased and decreased signal intensities. Spectral-domain optical 
coherence tomography (SD-OCT) clearly demonstrates the dome-shaped 
elevation of the retinal pigment epithelium with hyperreflective foci 
in inner and outer retinal layers on top of the PED. The position of the 
SD-OCT line scan in the en face images is represented as a green line. 
Please note, figure modified to a previous work.15

see table 1. Large, confluent drusen were found to be the most 
frequent local precursor (n=19; phenotype 1), followed by RPD 
(n=10; phenotype 2), refractile deposits (n=4; phenotype 3), 
pigment epithelial detachments (PEDs; n=4; phenotype 4) and 
vitelliform material (n=2; phenotype 5). A detailed morpho-
logical description of confluent drusen, RPD, refractile deposits 
and a PED collapse in multimodal imaging has been provided in 
previous reports.15 25

Phenotype 1 was primarily assessed in CFP showing large, 
confluent drusen as well-defined yellow elevated mounds 
corresponding to RPE detachments in SD-OCT imaging (see 
figure 1).26 RPD (phenotype 2) were characterised by a group of 
hyporeflective dots, targets or a ribbon pattern in NIR and FAF 
topographically corresponding to hyperreflective mounds above 
the RPE in SD-OCT (figure 2).11 27 For identification of pheno-
type 2, RPD had to be present in the area of subsequent atrophy 
development in absence of confluent drusen (see figure  2). 
Refractile deposits were identified as phenotype 3 (see figure 3) 
in CFP imaging as glistening, yellow-shiny lesions corresponding 
to a laminar intense hyperreflectivity at the BM level or to a 
pyramidal structure in the outer retina.13 28 PED (phenotype 4) 
was identified as precursor lesion when (in contrast to confluent 
drusen) its localisation was centred to the fovea and its diameter 
was at least 1000 µm and its height at least 200 µm as measured 
in SD-OCT imaging (see figure 4).29 Precursor phenotype 5 was 
determined as vitelliform material indicated by accumulation 
of hyperreflective, amorphous material in the subretinal space 
in SD-OCT associated with cuticular drusen and which was 
spatially confined to an area of hyperautofluorescence in FAF 
(see figure 5).30–33 Of the five included study patients with both 

eyes being included in this analysis, the same local precursor was 
symmetrically identified for both eyes.

GA progression rates based on the local precursor
The predominant precursor lesion showed a significant associa-
tion with the subsequent (sqrt) GA progression rate (p=0.0018) 
with a mean of 1.14±0.19 (±SE) mm per year in eyes catego-
rised as phenotype 1, see table  2. Compared with phenotype 
1, atrophies related to RPD (phenotype 2) or fulminant PED 
collapse (phenotype 4) were associated with faster (sqrt) progres-
sion rates of 1.14±0.33 mm per year and 0.79±0.47 mm per 
year, respectively. In the case of atrophy development following 
refractile deposits (phenotype 3) or vitelliform material (pheno-
type 5), atrophies were associated with a less rapid annual 
progression by a mean of 0.39±0.47 mm per year for phenotype 
3 and 0.21±0.77 mm per year for phenotype 5 compared with 
phenotype 1. Post hoc analysis (see table 3) revealed that mean 
(sqrt) progression rate of atrophies deriving from RPD (pheno-
type 2) differed significantly from those deriving from confluent 
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Figure 5  Typical example of local precursor phenotype 5 over an 
observational period of 3.5 years showing yellow-shiny vitelliform 
material in colour fundus photography imaging which topographically 
corresponds to hyperreflectivity in fundus autofluorescence and near-
infrared imaging. Same arrangement of images as in figure 1, except 
for the third picture in first row: fluorescein angiography (FAG). SD-OCT 
demonstrates hyperreflective material in the subretinal space. Cuticular 
drusen are well distinguishable in FAG due to their ‘stars-in-the-sky’ 
appearance. The position of the SD-OCT line scan in the en face images 
is represented as a green line.

Table 2  Linear mixed model analysis of mean square-root 
transformed (sqrt) annual progression rates over the observational 
period of subsequent atrophies stratified regarding the local precursor

Variable
Coefficient estimates
(mm/year) SE P value

Intercept 1.1400 0.1900

Phenotype 1 (reference 
category)

0.0000 – 0.0018

Phenotype 2 1.1500 0.3300

Phenotype 3 −0.3900 0.4700

Phenotype 4 0.7900 0.4700

Phenotype 5 −0.2100 0.7700

The table contains coefficient estimates (ie, effects on progression rates), standard 
error (SE) of coefficient estimates and the p value obtained from a global likelihood-
ratio test.

Table 3  Post hoc analysis of differences in geographic atrophy 
progression rates between the identified local precursors (phenotypes 
1–5) as presented with coefficient estimates, standard error (SE) and 
corresponding p values

Post hoc analysis
Coefficient estimates
(mm/year) SE P value

Phenotype 2 vs 1 1.14 0.33 0.0039

Phenotype 3 vs 1 −0.39 0.47 0.9149

Phenotype 4 vs 1 0.8 0.47 0.4164

Phenotype 5 vs 1 −0.21 0.77 0.9988

Phenotype 3 vs 2 −1.54 0.5 0.0171

Phenotype 4 vs 2 −0.35 0.5 0.9540

Phenotype 5 vs 2 −1.35 0.79 0.4103

Phenotype 4 vs 3 1.18 0.6 0.2677

Phenotype 5 vs 3 0.18 0.86 0.9995

Phenotype 5 vs 4 −1.0 0.86 0.7566

drusen (phenotype 1, p=0.0035) as well as from refractile 
deposits (phenotype 3, p=0.0163).

The significant association of the local precursor with progres-
sion rates was primarily driven by RPD (phenotype 2) exhibiting 
the most rapid progression of GA with a mean (sqrt) progression 

of 2.29±0.52 mm per year, see table 2 (total of coefficient esti-
mates of intercept and phenotype 2). According to the FAF-
based classification system for GA by the FAM-study group,23 
most rapid progression of atrophies is exhibited in the diffuse-
trickling phenotype which itself is in most cases associated with 
the presence of RPD. The diffuse-trickling pattern was deter-
mined in five eyes of four patients (50%) with a phenotype 2 
precursor (n=10 eyes of eight patients) after a median observa-
tional period of 2.5±2.3 (±SD) years. In contrast, none of the 
eyes with other precursor lesions developed a diffuse-trickling 
GA pattern. Mean age at conversion to GA of the four diffuse-
trickling patients was 71.5±8.2 (±SD) years and 79.0±12.3 
(mean±SD) years for phenotype 2 patients without the diffuse-
trickling pattern. The annual (sqrt) progression of the diffuse-
trickling GA eyes tended to be a mean of 0.3±0.52 mm per year 
faster compared with phenotype 2 eyes without the diffuse-
trickling FAF pattern (p=0.5567).

Further analysis of additional effects on GA progression
In addition to the spatial association of local precursors, age 
(p=0.6136) and the status of the fellow eye (p=0.9184) showed 
no statistical effect on GA progression rates.

Discussion
GA represents a huge unmet medical need. To date, despite a few 
promising phase II clinical trials, efficacy has not been shown 
in phase III studies. The underlying pathophysiological mecha-
nisms of AMD progression and GA development with its pheno-
typic variations are neither yet fully understood nor completely 
reflected in evidence-based clinical AMD classification systems. 
Better understanding of the underlying risk profiles, especially 
of constant factors across follow-up and disease stages, may 
facilitate genotype–phenotype correlation studies, stratifica-
tion of patients and may provide the opportunity for earlier 
intervention.

In this study, we demonstrate that structural features in eyes 
with iAMD are of prognostic value for the subsequent GA 
progression (p=0.0018). In particular, post hoc analysis revealed 
that this association was driven by RPD, demonstrating that 
iAMD eyes with RPD exhibit a significantly higher enlargement 
rate of subsequent GA compared with eyes with other iAMD 
precursors. Although many studies have highlighted the need 
for a refined phenotypic iAMD characterisation regarding risk 
assessment for disease conversion, up to now, there had been 
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no studies which determined the intraeye relevance of iAMD 
phenotyping for subsequent characterisation of GA progres-
sion.11 13 34

Previous reports showed that GA progression is complex and 
depends on several factors including patient’s genotype as well 
as lesion features.8 23 35–37 Out of those, the perilesional FAF 
pattern was revealed to be a strong indicator for lesion progres-
sion with the most rapid progression in eyes presenting the 
diffuse-trickling pattern.23 Of note, this pattern is strongly char-
acterised by the presence of RPD; however, in our study, only 
50% of the eyes with development of GA spatially confined to 
RPD (phenotype 2) were considered to develop eventually the 
diffuse-trickling pattern; at least for the median observational 
period of 2.5±2.3 (±SD; range 0.9–7.7 (min–max)) years after 
first GA detection.

In recent years, several studies have focused on RPD differ-
entiating them structurally and functionally from ‘typical’ sub-
RPE drusen.19 38 39 In determining the natural history of different 
iAMD structural high-risk features beyond disease conversion 
into late-stage AMD, the results of our study might support 
the assumption of RPD being a distinct entity currently still 
subsumed in the complex spectrum of AMD.

When interpreting the results of our study, several limitations 
need to be considered. First, the study is based on a retrospective 
database analysis. While the retrospective nature of our study has 
allowed us to assess image data over large observational periods 
up to 12.7 years, follow-up intervals were not standardised 
across all included study patients hampering an analysis of more 
detailed structural alterations, like the recently proposed criteria 
for incomplete (i) RORA, which are assumedly closer related to 
GA development in time.40 In addition, it needs to be kept in 
mind that only a limited number of study eyes were identified 
as being eligible leading to small (eg, phenotype 5: n=2) and 
inhomogenous sample sizes across phenotypes 1–5. A profound 
statistical analysis of coexisting features (‘mixed’ phenotypes) 
and their interactions within the study eye could therefore not 
be implemented in this study.

In conclusion, we have provided a phenotypic characterisation 
of early GA progression in relation to the preceding iAMD high-
risk features (‘local precursors’). Here, we were able to demon-
strate that local precursors identified in iAMD stages exhibit 
significant association with the subsequent progression rates of 
GA. In particular, RPD were highlighted to differ significantly 
from other iAMD local precursor lesions. A profound character-
isation of imaging features being prognostic relevant for AMD 
progression across disease stages may facilitate mapping of an 
underlying long-lasting and ‘constant’ risk profile in patients 
with AMD and warrant being substantiated in larger and 
prospectively acquired study cohorts.
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