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the predictor variables and a single outcome variable. However, 
standard linear regression analysis makes the assumption that all 
observations are independent of each other. Measurements were 
nested within subjects and also test points in this study; hence, 
dependent of each other. Ignoring this grouping of the measure-
ments will result in the underestimation of standard errors of 
regression coefficients. The linear mixed model adjusts for the 
hierarchical structure of the data, modelling in a way in which 
measurements are grouped within subjects to reduce the possible 
bias derived from the nested structure of data.11 12

With VBLR-VF, the MD and PSD were calculated as follow, 
similarly to HFA SITA standard.10
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‍n‍: The number of the tested points.
‍Xi‍: The test result at the tested point ﻿‍ ‍(dB).
‍Ni‍： The age-corrected normal value at the tested point ﻿‍ ‍(dB).
‍Si‍: The age-corrected SD at the tested point ﻿‍ ‍(dB).
In addition, the test–retest reproducibility of the two VF 

measurements were compared using 52 VF sensitivity values 
through the root mean squared error (RMSE) statistic, defined 
as follows:

	﻿‍
RMSE =

√
52∑
i=1

(TD value of the ith point (1st VF)−TD value of the ith point (2nd VF))2
52 .

‍�

All analyses were performed using the statistical program-
ming language ‘R’ (R V.3.1.3; The Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS
Thirty-four of the 73 patients were male. Patients’ age was 
62.5±10.5 (39–84) (mean±SD, SD, (range)) years old. 62 in the 
122 eyes were right eyes.

The MD value with the SITA standard was −7.9±6.2 
(mean±SD, (range: −26.7 to 0.6]) in the first measurement 
and −8.7±6.2 (−27.3 to 0.3) dB in the second measurement, as 
shown in table 1. MD values with the VBLR-VF were −8.2±6.4 
(−25.6 to 1.4) and −8.0±6.2 (−24.9 to 1.6) dB for the first 

and second measurements, respectively. There was no significant 
difference between these four MD values (p>0.05, linear mixed 
model with the adjustment for multiple comparisons using the 
Tukey’s test). Figure  1 illustrates the relationship among MD 
values recorded with the SITA standard and the VBLR-VF. There 
were strong correlations in MD values between the first and 
second HFA SITA standard tests (correlation coefficient=0.97, 
p<0.0001, figure 1A) and also for the first and second VBLR 
tests (correlation coefficient=0.97, p<0.0001, figure  1B). In 
addition, there was a significant correlation between the MD 
values of the first HFA SITA standard tests and the first VBLR 
tests (correlation coefficient=0.97, p<0.0001, figure  1C) and 

Table 1  Comparisons of the values of MD, PSD and pointwise sensitivities

variables SITA-standard VBLR-VF P value* P value** P value† P value††

1st measurement MD, (mean±SD) (range), dB −7.9±6.2
(−26.7 to 0.6)

−8.2±6.4
(−25.6 to 1.4)

0.99 0.99 0.96 0.99

2nd measurement MD, (mean±SD) (range), dB −8.7±6.2
(−27.3 to 0.3)

−8.0±6.2
(−24.9 to 1.6)

1st measurement PSD, (mean±SD) (range), dB 8.5±4.9
(1.1 to 16.0)

8.7±4.8
(0.9 to 16.1)

0.30 0.97 0.92 0.39

2nd measurement PSD, (mean±SD) (range), dB 8.6±4.8
(1.1 to 16.6)

8.6±4.7
(0.9 to 16.2)

1st measurement Pointwise sensitivity, (mean±SD) (range), dB 21.8±11.2
(0 to 39)

21.0±11.4
(0 to 41)

1.00 0.64 <0.001 <0.001

2nd measurement Pointwise sensitivity, (mean±SD) (range), dB 21.0±11.2
(0 to 35)

21.1±11.2
(0 to 40)

*Shows the result of the comparison between SITA standard (1st) and SITA standard (2nd).
**Shows the result of the comparison between VBLR-VF (1st) and VBLR-VF (2nd).
†Shows the result of the comparison between SITA standard (1st) and VBLR-VF (1st).
††Shows the result of the comparison between SITA standard (2nd) and VBLR-VF (2nd).
MD, mean deviation; PSD, pattern SD; SITA, Swedish interactive threshold algorithm; VBLR, Variational Bayes Linear Regression; VF, visual field.

Figure 1  Relationship among MD values recorded with SITA standard 
and VBLR-VF. (A) MD values between first and second SITA standard, 
(B) MD values between first and second VBLR-VF, (C) MD values 
between first SITA standard and first VBLR-VF, (D) MD values between 
second SITA standard and second VBLR-VF. MD, mean deviation, SITA, 
Swedish interactive threshold algorithm, VBLR, variational Bayes linear 
regression, VF, visual field.
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the MD values between their second tests (correlation coeffi-
cient=0.98, p<0.0001, figure 1D).

The PSD value with the HFA SITA standard test was 8.5±4.9 
(mean±SD, (range: 1.1–16.0)) in the first measurement and 
8.6±4.8 (1.1 to 16.6) dB in the second measurement, as shown 
in table 1. PSD values with the VBLR-VF were 8.7±4.8 (0.9 to 
16.1) and −8.6±4.8 (0.9 to 16.2) dB for the first and second 
measurements, respectively. There was no significant difference 
between these four PSD values (p>0.05, linear mixed model). 
Figure 2 illustrates the relationship among PSD values recorded 
with the HFA and the VBLR. There were strong correlations 
in PSD values between the first and second HFA tests (correla-
tion coefficient=0.97, p<0.0001, figure  2A) and also for the 
first and second VBLR-VF tests (correlation coefficient=0.98, 
p<0.0001, figure 2B). In addition, there was significant correla-
tion between the PSD values of the first HFA SITA standard 
test and the first VBLR-VF test (correlation coefficient=0.96, 
p<0.0001, figure 2C) and the PSD values between their second 
tests (correlation coefficient=0.97, p<0.0001, figure 2D).

Table 1 shows the pointwise VF sensitivities in each measure-
ment. The pointwise VF sensitivity values with the HFA SITA 
standard test was 21.8±11.2 (mean±SD, (range: 0–39)) in 
the first measurement and 21.0±11.2 (0–35) dB in the second 
measurement. Pointwise VF sensitivity values with the VBLR-VF 
were 21.0±11.4 (0–41) and 21.0±11.2 (0–40) dB for the first 
and second measurements, respectively. There was no significant 
difference in the pointwise VF sensitivity values between the 
first HFA SITA standard test and the second HFA SITA standard 
test, and also between the first VBLR-VF test and the second 
VBLR-VF test (p>0.05, linear mixed model with the adjustment 
for multiple comparisons using the Tukey’s test), however, there 
was a significant difference in the pointwise VF sensitivity values 
between the first HFA SITA standard test and the first VBLR-VF 
test, and also between the second HFA SITA standard test and 

the second VBLR-VF test (p>0.05, linear mixed model with the 
adjustment for multiple comparisons using the Tukey’s test). 
Figure 3A,B shows the test–retest agreements with SITA standard 
test and also VBLR-VF test in a fashion similar to that in Artes 
et al.3 With both methods, precision decreased with increasing 
deficit. All of the pointwise VF sensitivities with SITA standard 
(first), SITA standard (second), VBLR-VF (first) and VBLR-VF 
(second) were significantly correlated to each other (all correla-
tion coefficient=0.92, p<0.0001). These relationships are illus-
trated in figure 3C,D.

The RMSEs as a function of MD values of SITA standard test 
(first and second measurements were averaged) were illustrated 

Figure 2  Relationship among PSD values recorded with the SITA 
standard and the VBLR-VF. (A) PSD values between first and second SITA 
standard, (B) PSD values between first and second VBLR-VF, (C) PSD 
values between first SITA standard and first VBLR-VF, (D) PSD values 
between second SITA standard and second VBLR-VF. HFA, Humphrey 
field analyser; PSD, pattern SD; SITA. Swedish interactive threshold 
algorithm; VBLR, variational Bayes linear regression; VF, visual field.

Figure 3  Relationship among pointwise VF sensitivities recorded 
with SITA standard and VBLR-VF. (A) Pointwise VF sensitivities between 
first and second SITA standard, (B) pointwise VF sensitivities between 
first and second VBLR-VF, (C) pointwise VF sensitivities between first 
SITA standard and first VBLR-VF, (D) pointwise VF sensitivities between 
second SITA standard and second VBLR-VF. SITA, Swedish interactive 
threshold algorithm; VBLR, variational Bayes linear regression; VF, visual 
field.

Figure 4  RMSE as a function of MD values. (A) The RMSE as a 
function of MD value is illustrated. MD value was calculated as the 
average of the first and second measurements with SITA-standard. (B) 
The measurement duration as a function of MD value is illustrated. 
MD value was calculated as the average of the first and second 
measurements with SITA-standard. MD, mean deviation; RMSE, root 
mean squared error; SITA, Swedish interactive threshold algorithm; 
VBLR, variational Bayes linear regression; VF, visual field.
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in figure 4A. There was no significant difference in the RMSE 
values between SITA standard test and VBLR-VF test (p=0.68, 
linear mixed model). This was also the case when RMSEs were 
compared between the two methods in each of early (MD with 
SITA standard ≥6 dB), moderate (MD with SITA standard 
between −6 and −12 dB) and advanced stage (MD with SITA 
standard ≤12 dB)13 (p=0.68, 0.66 and 0.53, respectively, linear 
mixed model).

The measurement duration with the HFA SITA standard test 
was 6 min and 2 s±1 min 6 s (3 min 57 s to 8 min 34 s) in the 
first measurement and 6 min 2 s±1 min 2 s (4 min to 8 min 27 s) 
in the second measurement. A significantly shorter measurement 
duration was observed for the VBLR-VF test: 5 min 23 s±1 min 
32 s (2 min 49 s to 8 min 51 s) and 5 min 30 s±1 min 26 s (2 min 
58 s to 8 min 44 s) for the first and second measurements, respec-
tively (p<0.001). This was also the case when the measurement 
durations were compared between the two methods in each of 
early (MD with SITA standard ≥6 dB), moderate (MD with 
SITA standard between −6 and −12 dB) and advanced stage 
(MD with SITA standard ≤12 dB)13 (all p<0.001 except for eyes 
in advanced stage in the second measurement: p=0.013, linear 
mixed model). The measurement duration was illustrated in the 
relationship to the MD values of SITA standard test (first and 
second measurements were averaged), figure 4B.

DISCUSSION
VF measurement was conducted in this study, using a novel 
algorithm of VBLR-VF, and the measurement results were 
compared with the SITA standard programme with HFA, in eyes 
with POAG. As a result, the measured sensitivity values were 
very closely related between the VBLR-VF and the SITA stan-
dard methods. More specifically, MD and PSD values had the 
correlation coefficient values between 0.97 and 0.99 (figures 1 
and 2), and there were no significant differences in the MD and 
PSD values between SITA standard and VBLR-VF (table 1). The 
pointwise sensitivities were also very closely related between 
SITA standard and VBLR-VF with the correlation coefficient of 
0.92. There was a significant difference in the pointwise sensitiv-
ities between SITA standard and VBLR-VF, however, there was 
no systematic trend which algorithm is associated with higher 
sensitivity than another in the repeated measurements (VF sensi-
tivity was higher and lower with the SITA standard in the first 
and second measurement, respectively). The RMSE value of the 
test–retest reproducibility was not significantly different between 
the two methods. In contrast, the measurement duration was 
significantly shorter with the VBLR method by 30 or 40 s. The 
reduction of the VF measurement duration was observed across 
the disease status, as illustrated in figure 4B.

Since the algorithm of SITA was introduced in HFA in 1980s, 
despite efforts, there has been no method which succeeded to 
shorten the testing duration without losing the accuracy. The 
currently proposed VBLR-VF algorithm achieved significantly 
faster VF measurement in the initial VF measurement, compared 
with SITA standard. Of note, it was not associated with the 
increase of the test–retest reproducibility, unlike other SITA 
families, such as fast and faster.3 5 6 This is probably because 
SITA fast and faster attempted a faster measurement simply by 
omitting some reversals in the thresholding and also false nega-
tive test, whereas VBLR-VF avoided redundant target presen-
tation by accurately predicting threshold at each test point 
using VBLR. In the bracketing thresholding method, the time 
required to determine the threshold becomes long when the 
luminance of the initial target presentation is far different from 

the threshold, because a larger number of target presentations 
are needed. In SITA standard, thresholds of the adjacent test 
points are predicted using the maximum likelihood estimation 
derived from a database of glaucomatous and normative VFs, 
so that the initial luminance level is optimisation. In addition, in 
SITA standard, thresholding is even terminated earlier using the 
Bayesian posterior probability of the threshold. The currently 
proposed VBLR-VF algorithm takes similar approach with SITA 
standard that the optimisation of the initial luminance level and 
early termination are conducted, so that VF measurement dura-
tion becomes short. In addition, both SITA standard and VBLR 
predict VF sensitivities using the Bayes statistic. In VBLR, the 
prediction of VF sensitivity was given, considering the spatial 
and temporal patterns of the VF damage and also the correlation 
across the test points.8 9 As a result, we have reported that very 
accurate prediction of future VF progression can be made; the 
prediction accuracy when predicting 10th future VF even with 
the initial 1 or 2 VFs using the VBLR was almost identical to 
that with 9 VFs using ordinary linear regression. In the current 
study, this accurate prediction also enabled significantly faster 
measurement of VF compared with SITA standard.

Attempts have been made to shorten the VF measurement 
also in perimetries other than HFA. The German Adaptive 
Thresholding Estimation (GATE) in Octopus perimetry 
(Haag-Streit, Switzerland) is one of such examples, in which 
the initial target luminance is decided considering the patient’s 
past VF.14 15 A previous study suggested that this approach 
resulted in identical or slightly poorer (where VF sensitivity 
is high) test–retest reproducibility with GATE compared with 
SITA standard, with a shorter measurement time (approxi-
mately 16% reduction: 4.7 min with GATE and 5.6 min with 
SITA standard in average). This shortening effect was slightly 
more than the currently proposed VBLR-VF algorithm short-
ened approximately 11 or 8% compared with SITA standard. 
However, a merit of the VBLR-VF algorithm over the GATE 
programme is that previous VF measurement is not needed, 
and can be applied to even the initial VF measurement. In addi-
tion, the advantage of GATE measurement may be question-
able when very long period, such as 5 or 10 years, has passed 
from the prior VF measurement, because of the possible large 
discrepancy between the past and current VFs. The current 
experiment was conducted without using patients’ past VF 
data, assuming an initial VF measurement in each patient. In 
other words, more accurate prediction would be given, when 
the patient’s past VF data is also utilised in the VF sensitivity 
prediction using VBLR. It would be of interest to investigate 
in future whether VBLR-VF can shorten VF measurement no 
less than GATE programme under this condition. There are 
other programmes in Octopus perimetry, such as Dynamic 
strategy and Tendency Oriented Perimetry programme. These 
were developed aiming at fast VF measurement, by varying 
the luminance interval in the bracketing according to the 
eccentricity from fovea (Dynamic strategy) or performing 
target presentation only once at each test point and infer-
ring adjacent test points’ thresholds.16 These measurements 
are known to be shorter than SITA standard measurement; 
however, the measurement accuracies have been reported to 
be optimal.17–20 Inaccurate measurement of VF sensitivity is 
not only problematic in assessing the disease status of glau-
coma, but also in detecting progression, because detection of 
progression is delayed associated with larger variability of VF 
measurement, as reported by Jansonius.21 The zippy estima-
tion by sequential testing (ZEST)22–24 is another VF measure-
ment algorithm which has been reported as possibly useful 
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to measurement accuracy compared with SITA, but not the 
measurement duration.25 A further merit of ZEST is that it is 
available for use on an Octopus perimeter through the Open 
Perimetry Initiative, where the source code is also available, 
unlike VBLR-VF. A study would be needed to compare the 
measurement accuracy and duration between the currently 
proposed VBLR-VF and ZEST in future.

Jansonius reported that the detection of progression does not 
only rely on the accuracy (variability), but also the frequency 
of VF measurement; progression detection is delayed when less 
frequently measured.21 SITA-standard algorithm enabled much 
faster VF measurement compared with its Full Threshold algo-
rithm predecessor, however previous studies have reported that 
it is difficult enough for busy clinics to carry out central VF 
testing with sufficient frequency.26 27 Recent studies revealed the 
importance of VF measurement in the central 10 degrees,28–32 
such as HFA 10–2 test, has further postulated this aspect. Faster 
VF measurement without losing the measurement accuracy, such 
as with the VBLR-VF algorithm, would be needed to resolve the 
problem of the burden of the VF measurement to clinical facil-
ities as well. Thus the possible merit of the faster VF measure-
ment with fast VF measurement is not only in the reduction of 
the patients’ burden and prevention of fatigue effect. As shown 
in the current study, the measurement duration with VBLR-VF 
was significantly faster than that of SITA standard, however, the 
difference was merely less than 1 min which is relatively small 
compared with the shortening effect with SITA fast or faster, and 
may not be sufficient to prevent patients’ fatigue considerably. 
One of the possible reasons would be that the current study was 
conducted assuming the first VF measurement for each eye. A 
further reduction of the measurement can be expected when VF 
measurement is conducted thereafter, because VF prediction in 
VBLR can be much more accurate when the previous VF record 
of the patient is used. A further study should be conducted shed-
ding light on this issue.

There are several limitations to this study. As VBLR can predict 
patients’ VFs accurately when past VF data are used, nonetheless 
this information was not used in this study. This was because the 
current study was conducted assuming the initial VF measure-
ment in each patient, however a further faster VF measurement 
may be achieved through more accurate prediction in VBLR with 
the patient’s previous VF data, which should be investigated in a 
future study. In addition, current study was conducted using the 
HFA 24–2 test grid. The usefulness of this approach should be 
evaluated with the HFA 10–2 test grid.

In conclusion, we developed a novel VF measurement algo-
rithm of VBLR-VF. This programme shortened VF measurement 
by 30 or 40 s, compared with the SITA standard programme 
without losing measurement accuracy.
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