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them (13/28, 46.4%) presented with advanced myopic macular 
change, in whom majority with truncating mutation (71.4%, 
10/14) showed severer categories of maculopathy (C2 or C3), 
whereas most patients with missense variants (78.6%, 11/14) 
had relatively milder maculopathy (C0 or C1) (p=0.02).

DISCUSSION
This study sheds light on the genetic background of eoHM based 
on a large data set of 928 families with eoHM, of which ARR3 
is the most frequently implicated gene by a unique X-linked 
female-limited inheritance, out of the 14 genes investigated. The 
large case series of 29 families with ARR3 mutations provide 
valuable recognition of the special ARR3-associated MYP26. 
All truncations and highly scored missense mutations in ARR3 
were intolerant and caused eoHM with cone impairment in 
unique X-linked female-limited mode. Overall, our study largely 
expanded our knowledge of eoHM, especially ARR3-associated 
MYP26, which will bring a strong impact on a broad audience.

Non-syndromic HM is diagnosed by a high degree of 
refraction (<−6.0D) and an exclusion process of abnormality 
involving other ocular segments or other systems, which is the 
diagnosis requirement of syndromic HM. Precise ophthalmology 
and whole physical check-up are essential in the differential 
diagnosis of syndromic and non-syndromic HM. Pathologic 

myopia is not always occurred with HM and is diagnosed by 
the presence of posterior structural changes (posterior staphy-
loma or myopic maculopathy). It has been identified that eoHM 
might be accompanied by reduced scotopic and photopic ampli-
tudes, which was strongly correlated with the degree of myopia 
or myopic maculopathy in the late stage.25 26 Different from 
cone dystrophy, patients with ARR3-associated MYP26 usually 
presented with reports of near vision and myopia diagnosis by 
routine examinations, but no photophobia or colour blindness, 
which is characteristics of cone dystrophy. Macular involve-
ment earlier occurred in cone dystrophy than ARR3-related 
myopic maculopathy. The cone involvement in ERG of patients 
with MYP26 and the strong association between the under-
lying pathogenic mechanism of ARR3 and cones suggested that 
ARR3-associated MYP26 and cone dystrophy are distinct but not 
completely separate. For the absence of completely ophthalmic 
examinations from some patients and not enough follow-up data 
for each patient, considering disease progression and phenotype 
variability, whether the MYP26 is non-syndromic or syndromic 
is eager to be clarified in more patients with detailed tests.

HM has drawn wide public attention for its increasing prev-
alence, poor understanding of pathogenesis mechanism and 
complex interaction.1 Identification of causative genes and 
exploration of underlying pathogenesis mechanism will open 

Figure 5  Wide-�eld fundus photography of in-house patients with heterozygous ARR3 variants. (A–F)�More than half of in-house patients 
presented with tessellated fundus to various extents without obvious retinal degeneration in the peripheral area. There was no auto�uorescence 
abnormality in the fundus auto�uorescence examination (C).�(G–H)�The appearance of speci�c white dots and lattice retinal degeneration in the 
peripheral retina area was mostly observed among elder female patients in our cohort. The middle parts of the two images correspond to magni�ed 
images of the peripheral retinal degeneration area.
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new avenues for potential intervention. A recent study found 
that ARR3 mutations were responsible for 5% of cases and 
concluded as the most common cause of eoHM.7 Based on our 
cohort of eoHM, ARR3 was the most frequently implicated 
gene for Mendelian eoHM (~3.1%), and OPN1LW ranked the 
second (~2.4%). Cone-specific expression of both ARR3 and 
OPN1LW reminds cones to play an important role in the devel-
opment of eoHM.8 27 Complex interactions involving numerous 
pathways for myopia development have been raised.28 A meta-
analysis revealed that the light-dependent retina-to-sclera 
signalling cascade is an essential trigger of refractive error.29 A 
‘contrast hypothesis’ of OPN1LW though that mosaics status of 
cones with variable amount of photopigment leads to abnormal 
contrast and stimulates of eyeball growth.30 Recently, an ARR3 
related cone-associated hypothesis postulated that X-arrestin 
dystrophy in long and medium (LM) cones results in more sensi-
tive function-to-colour stimuli, leading to higher luminance 
contrast and elongation of eyeballs.11 The exact underlying 
mechanisms of both ARR3 and OPN1LW are unknown. Func-
tional studies that provide insights into the molecular patho-
genesis of cone-dysfunctional-related eoHM may shed light on 
effective intervention for eoHM. The absence of evidence of 
the other 11 genes with eoHM was based on updated criteria at 
the individual gene level, which might be explained by interac-
tion effect with other factors, susceptible genetic contribution, 
incomplete penetrance and polygenic inheritance patterns of 
high myopia, which need to be uncovered in further research.

Recently, a man with a nonsense variant in ARR3 was found 
to display eoHM, which reminded the non-zero penetrance of 
MYP26 in men.12 Four affected men and two unaffected women 
in this study revealed the non-zero penetrance of MYP26 in 
hemizygous men (~33.3%) and not the 100% penetrance in 
women (~97.0%). The female-to-male sex ratio could be up 
to ~20:1, considering affected members without genotype. 
Female carriers of several genes in X-linked recessive traits 
exhibit the identical or milder phenotype than affected men, 
such as RPGR, FRMD7 and GPR143.31 These men with ARR3 
variants and eoHM might provide insights into the mechanisms 
of the unique X-linked female-limited inheritance. The X-inac-
tivation mechanism results in a somatic mosaicism cell status, 
in which mutant and wild-type cells coexist, mutually compete, 
and lead to unique female-limited inheritance.32 Affected men 
with mental retardation restricted to women due to PCDH19 
mutations were also identified and were explained by the mosa-
icism status mimicking the cellular interference pathogenic 
mechanism of women,33 which has been tested by sophisticated 
mouse models.34 A few unaffected women might be explained by 
the irregular dominance, defects in other unknown hyperopia-
associated genes or bidirectional regulation mechanisms.35 Ten 
unaffected individuals (8 men and 2 women) with mutations did 
not report of other clinical symptoms, had refraction no more 
than −6.0D, and normal fundus manifestations as well as retinal 
structure. It is unknown whether they had functional impair-
ment even though the normal fundus manifestation and whether 
there are abnormalities in far-periphery that is hard to find in 
routine posterior photography, which needs more attention in 
future studies.

In conclusion, our study enriched our knowledge regarding 
eoHM, especially ARR3-associated MYP26 with cone involve-
ment, which develops into pathologic myopia with age. The 
nature of variants might affect the progression and be an 
important prognostic decider, in which truncation variants result 
in a severer phenotype. The potential pathogenesis mechanism 
of ARR3, the most frequently implicated genes responsible for 

Mendelian eoHM, might provide new insights into the myopic 
aetiology as well as additional underlying targets for therapeutic 
interventions. Furthermore, confirmation of the unique X-linked 
female-limited inheritance highlights the underlying genetic 
defects for additional hereditary diseases and may be a signifi-
cant breakpoint to solve more problems in inherited diseases of 
unknown genetic defects.
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