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ABSTRACT
Aims To assess whether incorporating a machine 
learning (ML) method for accurate prediction of 
postoperative anterior chamber depth (ACD) improves 
cataract surgery refraction prediction performance of 
a commonly used ray tracing power calculation suite 
(OKULIX).
Methods and analysis A dataset of 4357 eyes 
of 4357 patients with cataract was gathered at the 
Kellogg Eye Center, University of Michigan. A previously 
developed machine learning (ML)–based method 
was used to predict the postoperative ACD based on 
preoperative biometry measured with the Lenstar LS900 
optical biometer. Refraction predictions were computed 
with standard OKULIX postoperative ACD predictions 
and ML- based predictions of postoperative ACD. The 
performance of the ray tracing approach with and 
without ML- based ACD prediction was evaluated using 
mean absolute error (MAE) and median absolute error 
(MedAE) in refraction prediction as metrics.
Results Replacing the standard OKULIX postoperative 
ACD with the ML- predicted ACD resulted in statistically 
significant reductions in both MAE (1.7% after zeroing 
mean error) and MedAE (2.1% after zeroing mean error). 
ML- predicted ACD substantially improved performance in 
eyes with short and long axial lengths (p<0.01).
Conclusions Using an ML- powered postoperative ACD 
prediction method improves the prediction accuracy of 
the OKULIX ray tracing suite by a clinically small but 
statistically significant amount, with the greatest effect 
seen in long eyes.

INTRODUCTION
Postoperative intraocular lens (IOL) position esti-
mation is essential to IOL power calculations for 
cataract surgery. Inaccuracy in prediction of the 
postoperative anterior chamber depth (ACD) has 
been reported to be the primary remaining source 
of error in IOL power calculations.1 2 Methods for 
predicting postoperative ACD have evolved over 
the past several decades. First- generation lens calcu-
lation formulas represented postoperative ACD by a 
constant. As more biometric variables have become 
available, additional preoperative measurements 
such as the axial length and corneal power have 
been added to methods for estimating the postoper-
ative IOL position.

Most modern IOL calculation formulas involve 
computation of postoperative refraction using 
Gaussian optics, which relies on the assumption 
that incoming rays are paraxial, in addition to 

empirically determined adjustment factors. The 
primary empirical adjustments for these modern 
formulas (such as Barrett Universal II, Holladay 2 
and SRK/T) are made through the use of effective 
lens position (ELP) as an intermediate quantity to 
indicate the location of the lens as it relates to a 
given optical model of the eye.3 First introduced by 
Holladay in 1993,3 ELP was initially intended to 
estimate the position of the IOL in the postoper-
ative eye. In practice, however, the postoperative 
ACD and the optimal location of the principal 
plane of the IOL in a given formula’s optical model 
of the eye are not numerically equal.1 4 The optimal 
ELP in a given eye can be back- calculated with 
knowledge of the eye’s postoperative refraction. 
Achieving an accurate prediction of the optimal 
ELP for all patients is a more challenging task, 
however, and represents an ongoing limitation for 
modern formulas.

Numerical ray tracing represents an alternative 
to Gaussian optics for the purpose of IOL power 
calculation. Ray tracing involves the direct calcu-
lation of refraction of rays of light at each medium 
change within the eye using Snell’s law. Studies 
have demonstrated that ray tracing performance is 
comparable with that of state- of- the- art IOL calcu-
lation formulas in normal eyes and may provide 
improved IOL calculation accuracy in certain popu-
lations.5 6

The more data available regarding the index 
of refraction of each medium, the curvature of 
each surface (including the anterior and posterior 
surfaces of the cornea and the intraocular lens 
implant) and position of each of these refracting 
surfaces relative to one another, the more accurate a 
ray tracing calculation is. As such, ray tracing calcu-
lations are likely to benefit from improved methods 
for predicting the actual anatomical postoperative 
IOL position.

In previous work, our group has demonstrated 
that (1) it is possible to improve on estimates of 
the true anatomical postoperative IOL position 
through the use of a gradient- boosting machine 
learning (ML) approach, and (2) incorporation of 
this ML- predicted postoperative IOL position can 
be used to refine ELP estimates in existing IOL 
formulas and improve their accuracy.7 8

We investigate here whether our previously 
described ML method for prediction of postop-
erative IOL position is able to improve the accu-
racy of the commonly used OKULIX ray tracing 
suite for intraocular lens power calculation. The 
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standard approach to postoperative IOL position prediction 
in the OKULIX suite employs a regression model based on 
axial length and thickness of the crystalline lens. In the work 
presented here, we sought to determine whether, holding all 
else equal, replacement of the standard OKULIX postoperative 
IOL position prediction method with that of a highly accurate 
ML- based predictor had the potential to improve the accuracy of 
ray tracing calculations.

MATERIALS AND METHODS
Data collection
Preoperative and postoperative biometry records of patients 
with cataract were exported from the Lenstar LS900 optical 
biometers (Haag- Streit USA Inc, EyeSuite software V.i9.1.0.0) 
at the University of Michigan’s Kellogg Eye Center. Patients 
who had cataract surgery but no prior corneal surgery and no 
additional surgical procedures at the time of cataract surgery 
were included. Only surgery cases involving the implantation 
of Alcon SN60WF single- piece acrylic monofocal lenses (Alcon 
Inc., USA) were included in the study because it is the most 
commonly implanted lens at the Kellogg Eye Center. Cases that 
were used to train the postoperative ACD prediction ML model 
were excluded from the dataset so that the dataset involved only 
unseen samples. One eye was selected at random for each patient 
who had undergone surgery in both eyes, so that all cases in the 
final dataset were independent of each other. The preoperative 
information gathered included the measurements of the axial 
length (AL), crystalline lens thickness (LT), anterior chamber 
depth (ACD), the radius of curvature in the flat meridian (R1), 
the radius of curvature in the steep meridian (R2), patient 
gender and selected IOL power. As defined by the Lenstar LS900 
optical biometer, the postoperative ACD represents the distance 
from the anterior surface of the cornea to the anterior surface of 
the IOL. The postoperative refraction (including the spherical 
component (SC) and cylindrical component (CC)) records were 
obtained. The spherical equivalent (SE) refraction was calcu-
lated as  SE refraction =

(
SC− 0.1614

)
+ 0.5CC . The constant 

0.1614 was used to account for the length (10 feet, 3.048 m) 
of the examination lane according to Simpson and Charman’s 
recommendation.9 For each patient, the postoperative record 
that was generated closest to 1 month (ie, 30 days) after surgery 
was included. Details about the collection and processing of the 
dataset can be found in our previous publications.8 9

Performance comparison between OKULIX and ML-based 
approach
The dataset in total consisted of the aforementioned preoperative 
and postoperative data for 4357 eyes of 4357 patients (figure 1). 
Our postoperative ACD prediction ML model (referred to as the 
‘Base’ model in our prior work) was used to compute predictions 
of postoperative ACD (in mm) for each eye in the dataset based 
on the preoperative data (AL, CCT, preoperative ACD, LT, R1, 
R2 and WTW) and patient gender. Details about the ML method 
can be found in our previous publication.10 The OKULIX stand-
alone PC software suite (OKULIX V.9.20; Panopsis GmbH, 
Mainz, Germany) was used to compute refraction predictions 
based on the available preoperative biometry (AL, LT, R1, R2 
and preoperative ACD) and laterality of the case. In addition to 
the postoperative refraction, OKULIX also predicts the postop-
erative aqueous depth (AD) as an intermediate value which in 
downstream pipelines serves as one of the input variables for the 
prediction of the refraction. By design, the OKULIX software 
allows the users to replace its predicted postoperative AD with 

a custom value. We therefore compared the refraction predic-
tion accuracy of OKULIX when different postoperative anterior 
chamber depths (PACDs) were used: (1) its standard internal 
prediction of postoperative ACD and (2) the postoperative ACD 
prediction from our ML model. OKULIX by default outputs a 
predicted AD defined as the distance from the posterior surface 
of the cornea to the anterior surface of the IOL, instead of a 
predicted PACD (defined as distance from the front surface of 
the cornea to the anterior surface of the IOL). In order to trans-
form the ML- predicted postoperative ACD to a predicted post-
operative AD, the preoperative central corneal thickness (CCT) 
was subtracted from the ML- predicted postoperative ACD. 
Similarly, to compare the OKULIX and ML- predicted PACD, we 
transformed the OKULIX- predicted postoperative AD to post-
operative ACD prediction by adding the preoperative CCT. The 
equations used to transform predicted postoperative ACD to 
AD and AD to ACD are shown as follows, where the OKULIX- 
predicted postoperative AD is the direct output from OKULIX 
and the ML- predicted postoperative ACD is the direct output 
from the ML method.

 

OKULIX predicted postop. ACD = OKULIX

predicted postop. AD+ preop. CCT   

 

ML predicted postop. AD = ML predicted postop.

ACD− preop. CCT   

The dataset was split into an optimisation dataset and a 
performance comparison dataset, where the former was used 
for zeroing out the mean error and the latter was used for 
prediction performance comparison. A total of 1000 cases were 
randomly set aside as the optimisation dataset. Increasing the 
size of the optimisation dataset did not significantly change the 
results (results not shown). The remaining 3357 cases were used 

. - +

PC Software

                                randomly 
selected for zeroing out ME

Adjusted predicted refractionCalculate MAE and MedAE for OKULIX and ML

1000 cases                                 used for 
  performance comparison

3357 cases

Pipeline Preop biometry

Postop refraction

Patient demographics

OKULIX-predicted
PACD

ML-predicted
PACD

subtract the mean error (ME) 

1

2

3

4357 cases

Predicted refraction
(ML)

Predicted refraction
(OKULIX)

Figure 1 Analysis pipeline of the presented study. MAE, mean 
absolute error; MedAE, median absolute error; PACD, postoperative 
anterior chamber depth. The ‘OKULIX- predicted PACD’ was not a direct 
output from OKULIX, but calculated as  PACD = PAD+ CCT  , where 
 PAD  is the OKULIX- predicted postoperative aqueous depth (AD). The 
eye illustration was created by TL.
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to assess performance of the ray tracing calculations with and 
without the ML- predicted PACD. Mean absolute error (MAE), 
median absolute error (MedAE) and mean error (ME) of refrac-
tion predictions were computed for performance comparison. 
The prediction error was defined as follows. A negative error 
corresponds to a more myopic prediction, and a positive error 
corresponds to a more hyperopic prediction.

 prediction error = predicted refraction− actual refraction  
We further bootstrapped the performance comparison dataset 

to obtain the confidence intervals for the MAE, MedAE, and 
differences in MAE and MedAE. Specifically, a random sampling 
of 3357 cases with replacement was applied 10 000 times to the 
performance comparison dataset, and four metrics were calcu-
lated for those 10 000 bootstrap samples as follows. Let  pi  be the 
absolute error of the OKULIX- based approach for the i- th case 
and  qi  be the absolute error of the ML- based approach for the 
i- th case in the bootstrap dataset. For each bootstrap dataset, we 
calculated (1) the mean absolute error as  mean

{
p1, p2, ..., p3357

}
  

and  mean
{
q1, q2, ..., q3357

}
 , (2) the median absolute error 

as  median
{
p1, p2, ..., p3357

}
  and  median

{
q1, q2, ..., q3357

}

 , (3) the mean of the differences between the absolute error 

as  mean
{
p1 − q1, p2 − q2, ..., p3357 − q3357

}
  and (4) the 

median of the differences between the absolute error as 

 median
{
p1 − q1, p2 − q2, ..., p3357 − q3357

}
 .

Zeroing of mean error
To account for possible systematic differences in our patient 
population, we zeroed out the mean errors of the OKULIX 
predictions individually for the OKULIX and ML approaches. 
This was done by computing the mean error on the optimis-
ation dataset and subtracting it from the predictions on the 
performance comparison dataset (figure 1). The aforementioned 
scoring metrics (eg, MAE) were computed after the zeroing of 
mean error.11

Statistical analysis
A paired Wilcoxon test was performed to evaluate the signifi-
cance of the difference between the OKULIX and ML- predicted 
PACD. The same test (Wilcoxon test) was performed to test 
whether the prediction errors of the OKULIX and ML- based 
approach were significantly different. Statistical significance was 
defined as the p value <0.05. All the aforementioned analyses 
were performed with Python V.3.7.3.

RESULTS
Dataset overview
The dataset in total consisted of 4357 cataract surgery cases of 
4357 patients. Among those patients, 1919 (44.04%) were males 
and 2438 (55.96%) were females. A summary of the dataset is 
shown in table 1. The OKULIX- predicted postoperative ACD 
had a mean of 5.13 mm and was significantly longer than the 
ML- predicted postoperative ACD (mean=4.68 mm) (Wilcoxon- 
test p value<0.01).

Refraction prediction performance comparison
The OKULIX and ML- based approaches were compared using 
the performance comparison dataset, and the results are shown 
in table 2. The refraction prediction errors in the optimisa-
tion dataset were significantly different for the OKULIX and 
ML- based approaches (table 2, column 1) (Wilcoxon- test p value 
<0.01). The unadjusted predictions in the optimisation dataset 
from OKULIX tended to be more myopic compared with the 

true refraction (ME=−0.329 D), while the unadjusted predic-
tions from the ML- based method tended to be more hyperopic 
(ME=0.211 D) (although to a lesser extent). After subtracting 
the mean errors from the optimisation dataset, the mean errors of 
the OKULIX and ML- based approaches became much closer to 
zero in the performance comparison dataset (table 2, column 2). 
The mean absolute errors (MAEs) in refraction prediction were 
significantly lower for the ML- based approach compared with 
the OKULIX- based approach (table 2, column 3) (Wilcoxon- test 
p value <0.01).

The bootstrap distributions of MAE, MedAE and the mean/
median difference in absolute errors are depicted in figure 2. 
According to the bootstrap results, the 95% CI for MAEs was 
[0.3459, 0.3677] for OKULIX and [0.3404, 0.3615] for ML. 
The 95% CI for MedAE was [0.2679, 0.2901] for OKULIX 
and [0.2638, 0.2858] for ML. The 95% CI for the mean of the 
differences in absolute errors was [0.0017, 0.0101]. The 95% CI 
for the median of differences in absolute errors was [0.0003, 
0.0083].

Refraction prediction performance comparison in different 
axial length groups
We further summarised the performance of the OKULIX and 
ML- based approaches in different axial length (AL) groups in 
table 3. There were significant differences in the short and long 
AL groups and insignificant difference in the medium length 
group.

Table 1 Baseline characteristics of the dataset

Characteristic Mean±SD Median

Range

Min Max

Age at surgery (years) 70.66±9.53 71.24 13.23 89.45

Preoperative K (D) 43.85±1.61 43.84 33.42 50.39

Preoperative AL (mm) 24.21±1.38 24.01 20.44 31.22

Preoperative LT (mm) 4.52±0.45 4.51 2.50 5.99

Preoperative ACD (mm) 3.26±0.41 3.27 2.08 5.15

OKULIX- predicted postoperative ACD (mm) 5.13±0.29 5.12 4.25 6.24

ML- predicted postoperative ACD (mm) 4.68±0.26 4.69 3.85 5.59

Postoperative refraction (D) −0.56±0.96 −0.41 −12.16 3.34

The highly myopic postoperative refraction value (‘−12.16’ in the last row in the table) was 
from a patient with high myopia and unilateral cataract who chose a highly myopic target 
refraction to avoid anisometropia.
ACD, anterior chamber depth; AL, axial length; D, dioptre; LT, lens thickness; ML, machine 
learning.

Table 2 Performance comparison set results

Unadjusted ME 
in optimisation 
dataset ±SD

ME in 
performance 
comparison 
dataset ±SD

MAE in 
performance 
comparison 
dataset ±SD

MedAE in 
performance 
comparison 
dataset

OKULIX −0.329±0.471 0.018±0.478 0.357±0.318 0.280

ML 0.211±0.470 0.019±0.470 0.351±0.313 0.274

% improvement / / 1.7% 2.1%

The first column shows the ME ±SD in the optimisation dataset, where the ME was 
calculated from the unadjusted predictions from OKULIX and ML. The second column shows 
the ME ±SD in the performance comparison dataset, after subtracting the corresponding ME 
in the optimisation dataset from the original prediction from OKULIX and ML. The per cent 

improvement was calculated as  
OKULIX performance−ML performance

OKULIX performance  .
MAE, mean absolute error; ME, mean error; MedAE, median absolute error; ML, machine 
learning.
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DISCUSSION
In this study, we sought to determine whether using a ML- based 
approach to prediction of postoperative IOL position could 
improve the performance of a ray tracing approach to IOL 
power calculations.

Ray tracing offers several advantages over traditional geomet-
rical optics approaches to IOL power calculation. In partic-
ular, through the calculation of refraction of light rays at each 
refracting surface in the eye, factors such as irregular corneal 
curvature and varying pupil sizes can be accounted for with a ray 
tracing approach. The incorporation of more detailed surface 
information, including corneal tomography with Scheimpflug 
imaging or optical coherence tomography, offers the potential 
to maintain accuracy for a broader range of eyes than tradi-
tional methods. Since ray tracing accuracy depends primarily 
on the accuracy of anatomical measurements, rather than on 
theoretical quantities such as ELP, ray tracing may have greater 
long- term potential in comparison with traditional IOL calcu-
lation methods as techniques for measuring the size, shape and 
anatomical location of components of the eye’s optical system 
continue to evolve.

The physical location of the IOL (postoperative ACD) is one 
component of the post- cataract surgery optical system that is 
not directly measurable preoperatively. However, our group has 
previously developed and validated a ML method for accurate 
postoperative ACD prediction using preoperative optical biom-
etry, gender and intended IOL power.

In previous work, our group demonstrated that incorporating 
this ML method for postoperative ACD prediction into the ELP 
calculations of traditional IOL calculation formulas significantly 
improved the refraction prediction performance of these IOL 
formulas.8 Since ray tracing methods in theory require only the 
true postoperative ACD, rather than an ELP, it would logically 
follow that utilisation of our validated ML method for postoper-
ative ACD prediction could improve the accuracy of ray tracing 
IOL power calculations. In the study presented here, we eval-
uated whether replacing the standard model for postoperative 
ACD in the commonly used OKULIX ray tracing suite with our 
ML- based postoperative ACD prediction could improve the 
refraction prediction performance of the OKULIX suite.

We found that replacing the standard OKULIX postoperative 
ACD model (based on a linear regression of axial length and 
lens thickness) with our ML- based postoperative ACD model 
resulted in statistically significant improvements in the MAE and 
MedAE of ray tracing refraction predictions. It appears likely 
that the internal ACD predictions of OKULIX were sufficiently 
accurate in normal length eyes (as would be expected for a 
linear regression approach) such that no significant difference 
in refraction prediction was seen in the normal length eye popu-
lation. However, utilisation of our ML approach significantly 
improved refraction prediction MAE and MedAE in patients 
with short eyes (5.3% reduction in MAE, 7.3% reduction in 
MedAE) and those with long eyes (10.8% reduction in MAE, 
15.8% reduction in MedAE). Although the overall improvement 
and the improvement in the short eyes were clinically small, we 
believe the results are of clinical significance for the long eyes.

The results highlighted the impact of the accuracy of post-
operative ACD prediction on the accuracy of the refraction 
prediction for ray tracing methods. In relation to this study, our 
previous research has shown that substituting the ELP with a 
more accurately predicted postoperative ACD improved the 
accuracy of existing IOL formulas.8 Since more and more studies 
on ELP (or postoperative ACD) prediction have been published, 
it is important to synchronise the progress in ELP prediction 
with efforts on refraction prediction. Our research provided 
a support for the vital role of postoperative ACD prediction 
in refraction prediction, suggesting that new generation ELP 
prediction methods should be considered when developing new 
IOL formulas and should be considered for incorporation with 
existing IOL formulas as an easily achievable refinement.

Since our ML model for postoperative ACD prediction was 
demonstrated to outperform linear regression in its prior valida-
tion study, it would be expected that incorporation of this ML 
model into the OKULIX suite would improve refraction predic-
tion performance. While the means of the ACD predictions and 
refraction predictions were different between the standard and 
ML- based approaches, subtracting off the mean error in refrac-
tion prediction on an optimisation subset represents a straight-
forward (and previously described) method for addressing 
these systematic differences. The postoperative ACD prediction 
of OKULIX appeared to be longer than the ones predicted by 
the ML method (table 1), and naturally the unadjusted refrac-
tion predictions of OKULIX were more myopic (table 2). We 
corrected this systematic error by subtracting the mean error for 
the performance comparison dataset.
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Figure 2 Bootstrap results in the performance comparison dataset. 
(A) The distribution of the mean absolute error. (B) The distribution 
of the median absolute error. (C) The distribution of the means of the 
difference in the absolute errors of OKULIX and the machine learning 
(ML) method. (D) The distribution of the medians of the difference in 
the absolute errors of OKULIX and the ML method. The red dashed line 
marks the location of 0.0.

Table 3 Results comparison in different axial length groups

AL group
Number of 
cases (%)

Wilcoxon- test 
p value Method ±SD MedAE

Short
(AL≤23 mm)

589 (17.5) <0.01 OKULIX 0.394±0.333 0.313

ML 0.373±0.328 0.290

% improvement 5.3% 7.3%

Medium
(23 
mm<AL≤26 mm)

2429 (72.4) 0.22 OKULIX 0.340±0.306 0.265

ML 0.343±0.307 0.270

% improvement −0.9% −0.5%

Long
(AL >26 mm)

339 (10.1) <0.01 OKULIX 0.409±0.361 0.322

ML 0.365±0.328 0.271

% improvement 10.8% 15.8%

This table shows the performance of OKULIX and ML- based approaches for patients in the short, medium and long 

axial length group. The per cent improvement was calculated as 
 
OKULIX performance−ML performance

OKULIX performance  
. The Wilcoxon 

test was performed to compare the difference in the absolute errors between OKULIX and ML- based approaches in 
three different axial length groups.
AL, axial length; MAE, mean absolute error; MedAE, median absolute error; ML, machine learning.
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While our study was intentionally limited to eyes with normal 
corneas (in order to test the standard version of the ML model 
described in our group’s prior work), a clear future direction is to 
apply the keratometry- independent version of our ML model for 
predicting postoperative ACD to the ray tracing analysis of eyes 
with abnormal corneas, such as those with ectasia, prior refrac-
tive surgery or prior keratoplasty. This subset of patients with 
abnormal corneas is one group for which ray tracing has been 
demonstrated to have clear advantages over traditional methods 
for IOL power calculation. However, the accurate prediction of 
postoperative ACD in this population is more challenging due to 
the absence of reliable keratometry data.

In addition, our study was limited to a retrospective sample 
and further investigation in a prospective manner would be of 
value.

In summary, this study demonstrates that incorporation of 
a validated ML method for postoperative ACD prediction can 
significantly improve ray tracing IOL calculation performance. 
Further investigation into the efficacy of this approach in eyes 
with ectatic and post- refractive surgery corneas is warranted.
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